SOLID-M: An Ontology-Aware Quality Framework for
Conceptual Models Discovered from Event Data

Andrei Tour®*, Artem Polyvyanyy?, Anna KalenkovaP®

@The University of Melbourne, Parkville, 3010, VIC, Australia
YThe University of Adelaide, North Terrace Campus, Adelaide, 5000, SA, Australia

Abstract

In Process Mining (PM), “high-level” conceptual models of business processes,
in the form of directly-follows graphs, Petri nets, and finite-state automata,
are discovered from “low-level” event data recorded by information systems.
The quality of the discovered models is usually assessed by measures that
depend on assumptions made by discovery algorithms; for example, they of-
ten assume that sequences of activities recorded in the event data do not
interfere. Models produced by recent discovery algorithms consider domain
knowledge and relax these assumptions, making traditional PM measures
less suitable for evaluating their quality. This paper proposes an ontology-
aware framework, called SOLID-M, for analyzing the quality of conceptual
models discovered from event data generated by systems. SOLID-M relies
on domain knowledge and provides guidelines for introducing quality mea-
sures for models constructed by process discovery algorithms that go beyond
the traditional PM assumptions. In addition, the paper describes an in-
stantiation of the framework for assessing the quality of Multi-Agent System
models discovered using Agent System Mining techniques, hence addressing
a growing demand for data-driven analysis of business processes emerging in
interactions of human and artificial intelligence agents.

Keywords: conceptual model quality, ontology, process discovery

*Corresponding author.
Email addresses: atour@student.unimelb.edu.au (Andrei Tour),
artem.polyvyanyyQunimelb.edu.au (Artem Polyvyanyy),
anna.kalenkova@adelaide.edu.au (Anna Kalenkova)

1. Introduction

The aim of Process Mining (PM) is to discover, analyze, and repair con-
ceptual models of business processes using event data extracted from infor-
mation systems [1]. PM discovery algorithms synthesize process models in
“high-level” modeling languages (e.g., Petri nets and BPMN) from “low-level”
behavior specifications (e.g., event logs) [2].

An important success measure for business process modeling projects is
the quality of produced process models [3]. The PM community often reasons
about the quality of discovered models using the “four quality dimensions in
process discovery” framework (the 4QD framework) |[4]. The four dimensions
are replay fitness, precision, generalization, and simplicity. The 4QD frame-
work identifies recall, precision, and model size as common measures for the
replay fitness, precision, and simplicity dimensions, respectively. An intuitive
set-theoretical framework for quantifying the fitness, precision, and general-
ization dimensions is proposed by Buijs, van Dongen, and van der Aalst (the
BDA framework) [5]. The BDA framework defines several precision, recall,
and generalization measures by relating the behaviors captured in the model,
the log from which the model was discovered, and the system that generated
the log. The behaviors are given as sets of traces, where a trace is a sequence
of observed events, each referring to an activity executed in some instance of
a business process (also known as a case).

Process discovery algorithms based on the traditional process modeling
paradigms and the corresponding model quality measures share the same
assumptions, e.g., a single control flow for each case and a single case for
each event. These assumptions are relaxed in new PM types that extend or
mix the existing paradigms, e.g., Object-Centric Process Mining (OCPM) 2],
Agent System Mining (ASM) [6], and Queue Mining [7]. This observation
motivates the definition of new quality measures and frameworks suitable for
evaluating models constructed by new types of discovery algorithms.

We present the SOLID-M framework, an ontology-aware quality frame-
work for the assessment of models discovered from event data. SOLID-M
extends and generalizes the existing quality frameworks currently used in
PM. Our framework is grounded in the semiotic quality framework (SE-
QUAL) designed by Lindland, Sindre, and Selvberg [8] for the quality analy-
sis of conceptual models, and in the data quality framework with ontological
foundations based on Bunge’s ontology [9, 10]. We extend SEQUAL by
adding quality aspects that relate data with models and ontologies using set-

theoretical measures. The key to our approach is the observation that the
existing model quality frameworks used in PM (4QD and BDA) are limited
to behavior-only models. To address this limitation, we rely on SEQUAL.
Like BDA, SEQUAL follows a set-theoretical approach. However, elements
of the sets in SEQUAL are specification statements representing behavioral
or structural concepts, not limited to traces only.

With the rapid growth of Artificial Intelligence (AI), human-Al interac-
tions within business processes are becoming increasingly widespread [11].
Consequently, the importance of Multi-Agent System (MAS) discovery is
growing, necessitating new methods for assessing the quality of MAS mod-
els. In this context, we instantiate the SOLID-M framework to evaluate the
quality of MAS models discovered using Agent Miner [12] based on event
data generated by business processes.

The next section describes the methodology used to conduct the research
presented in this paper. Section 3 explains the context and background
information required for understanding the ideas articulated in this paper.
Section 4 provides an overview of the existing related model quality frame-
works. Section 5 introduces an example MAS model discovered by Agent
Miner. Section 6 presents the SOLID-M framework and exemplifies its in-
stantiation using an agent-based ontology and measures for assessing the
quality of MAS models discovered from event data. Section 7 discusses the
contributions of SOLID-M in the light of existing frameworks, sketches an al-
ternative instantiation of SOLID-M for OCPM, and acknowledges limitations
of the framework. Finally, Section 8 states concluding remarks.

2. Methodology

This paper presents a Design Science Research (DSR) artifact [13], the
SOLID-M quality framework designed for the analysis of conceptual models
discovered from event data. This artifact was developed using the DSR
Methodology (DSRM) by performing the following activities of the DRSM
process [14]:

e Problem identification and motivation. The measures of the qual-
ity of process models produced by traditional process discovery algo-
rithms are not suitable for assessing the quality of models discovered
by the new types of process discovery techniques. The reason for this is
that the assumptions underpinning the traditional quality measures do

not hold for these process discovery types. For example, the assump-
tions of a single process instance for each event and a single control
flow for each process instance are relaxed in OCPM and ASM, respec-
tively. Consequently, the motivation for this work is to propose ways to
evaluate models constructed by the new types of discovery algorithms.

Define the objectives for a solution. To address the identified
problem, we designed the SOLID-M framework to meet the following
requirements: (a) it must enable assessment of the quality of conceptual
models containing both behavioral and structural elements represent-
ing organizations and their processes; (b) it must enable explicit speci-
fication of the assumptions underpinning the techniques and measures
used for creation and quality assessment of the conceptual models; (c) it
must enable assessment of the quality of conceptual models discovered
from data recorded by information systems.

Design and development. We designed our quality framework,
SOLID-M, by combining and extending the existing frameworks and
models described in Section 4. The SOLID-M framework is defined in
Section 6. Its main components are the modeling artifact sets and qual-
ity aspects integrated into the aspect graph depicted in Figure 9. We
designed SOLID-M incrementally. Our starting point was the tradi-
tional PM quality frameworks (4QD and BDA) that define the quality
measures for behavior-only process models. To meet requirement (a),
we used SEQUAL [8, 15], a generic model quality framework supporting
conceptual models containing not only behavioral but also structural
elements. The original SEQUAL framework does not satisfy require-
ments (b) and (c¢) because it does not deal with explicit identification
of assumptions associated with quality aspects and does not define
any quality aspects relating models to data. To overcome this lim-
itation, we extended SEQUAL with ontology-related quality aspects
based on the ontology-aware representational model of information sys-
tems [16], which proposes the use of ontologies with explicitly defined
real world domain concepts. To satisfy requirement (c), we conceptu-
alized a model as a result of the data interpretation process described
in the ontology-aware data quality framework [10].

Demonstration and Evaluation. Our example instantiation of
SOLID-M demonstrates the use of the framework for analyzing the

4

quality of agent-based Petri net models discovered from event data by
the Agent Miner algorithm [12]. We evaluate SOLID-M by relating
the results of the demonstrated framework instantiation example with
the solution objectives stated as three requirements. Requirement (a)
is met in the example SOLID-M instantiation by including behavioral
(e.g., Event) and structural (e.g., Agent and Interface) elements in the
example Model set (see Figure 7 and Table 7). Requirement (b) is satis-
fied by explicit specification of the agent-based concepts in the Ontology
set (see Figure 10 and Table 2). Requirement (c) is fulfilled specifying
the characteristics (e.g., Model-Data Structural Completeness) and the
corresponding measure (e.g., Model-Data Structure Recall) for assess-
ing the Interpretational Model Quality aspect.

e Communication. We communicate the artifact we designed, the
SOLID-M framework, in the paper at hand.

3. Background

This section explains the context and key concepts underpinning the
SOLID-M framework, namely ontologies 17|, process discovery [4], and sys-
tems thinking [18].

3.1. Ontologies and Description Logic

The term ontology is understood differently in different communities. We
adopt a computational view frequently used in computer science. In this
context, a (computational) ontology is a formal, explicit specification of a
shared conceptualization [17], where a conceptualization is an abstract repre-
sentation of the world or some domain. Any formally represented knowledge
relies on a conceptualization that identifies objects, concepts, and the rela-
tions between them, which are assumed to exist in an area of interest. To be
an ontology, a conceptualization must be explicitly specified in some formal
language, with its meaning shared among its users.

In this paper, the Web Ontology Language (OWL) is used to specify
conceptualizations. More precisely, we use the OWL-DL sub-language of
OWL that has well-defined decidable semantics mapped to Description Logic
(DL) [19]. DL is a subset of First-Order Logic with decidable reasoning
problems. For each OWL-DL language construct, there is an equivalent
DL construct, which makes OWL-DL a popular language for representing
knowledge in the semantic web and knowledge management software [20].

5

The name “Description Logic” is motivated by the fact that, on the one
hand, the important notions of the domain are described by concept descrip-
tions, i.e., expressions that are built from atomic concepts (unary predicates)
and atomic roles (binary predicates) using the concept and role constructors
provided by the particular DL. On the other hand, DLs differ from their pre-
decessors, such as semantic networks and frames, in that they are equipped
with a formal, logic-based semantics.

DLs have three types of elements: individuals denoting things in the
world, concepts denoting sets of individuals, and roles denoting relations
between the individuals. A knowledge base represented using DLs has two
components: a TBor and an ABor. The TBox is a set of terminological
axioms, DL expressions that define the concepts and roles of the domain of
interest. The axioms contain the terminology of the knowledge base. The
ABox is a set of assertions about expressing the facts about the individuals

in the domain of interest. The assertions are expressed using the terminology
defined in the TBox.

3.2. Process Mining

Process Mining (PM) is a research discipline that studies techniques for
extracting knowledge about real world organizations from event logs recorded
by information systems [4]. The extracted knowledge is represented in con-
ceptual models of business processes using business process modeling lan-
guages (e.g., Petri net, BPMN, and UML activity diagrams). PM concep-
tualizes a business process as a sequence of events that happen to achieve
objectives in the context of an organization. Each event refers to an activity,
a well-defined unit of business behavior. The assumption is that repetitive
patterns of activity sequences exist in organizations and that the event data
captured from these organizations accurately represent the patterns.

The same event data may be interpreted from different PM perspectives,
each based on different goals and assumptions. The control flow perspective,
the main PM perspective, is grounded in the one case notion assumption.
According to this assumption, the purpose of a business process is to complete
one case (e.g., a customer request), and every event within this case is related
to this case only.

Object-Centric Process Mining (OCPM) relaxes the one case notion as-
sumption. It allows an event to be associated with multiple objects of differ-
ent types [21|. The way the quality of OCPM models is measured depends on

the object types and their relations. The use of process quality frameworks
relying on the single case notion is problematic for OCPM.

The Agent System Mining (ASM) perspective assumes that an end-to-end
(global) business process is induced by interactions of multiple autonomous
agents performing their own (local) processes [12]. This is different from a
traditional PM view of centrally controlled resources executing a well-defined
end-to-end flow of activities.

3.3. Behavior and Structure of Systems

This paper discusses the quality of conceptual models that describe real
world systems in terms of their behavior and structure. We define a system
as a whole consisting of social and technical components that interact with
each other to serve some purpose. This definition is similar to the notion
of a socio-technical system discussed by Wu et al. [22], which is used for
holistic modeling of artificial and natural phenomena in multiple problem
domains. For example, an organization can be conceptualized as a system
that contains people, computers, and other equipment as components, all
interacting to perform business processes.

A system model typically addresses two questions: “What does the sys-
tem contain?” and “What does the system do?” To answer these questions,
a model needs to describe the structure and behavior of the system, respec-
tively. Event and process are examples of concepts used to model system
behavior. Relationships among system components constitute the system
structure. Examples of system structure concepts are components, resources,
objects, actors, agents, and interfaces. ArchiMate is an example of an enter-
prise architecture language that explicitly groups its concepts into behavior
and structure categories [23|. In this framework, active structure elements
(i.e., actors) generate changes in passive structure elements (i.e., objects) by
executing behavioral elements (i.e., processes).

The key concepts in PM are behavioral. An event log is a collection of
traces, where a trace is a sequence of events describing the execution of a
single process instance. The focus is on what happens (behavior), not on who
and what makes it happen (structure). Nonetheless, some PM approaches
discover models that incorporate both behavioral and structural elements.
For example, OCPM discovers objects that represent the passive structure
of a system, whereas ASM discovers agents that capture its active structure.

4. Related Frameworks

This section provides an overview of the frameworks that influenced the
design of SOLID-M.

4.1. Four Quality Dimensions in Process Discovery

Figure 1 shows the four quality dimensions (4QD) framework for char-
acterizing the quality of process models discovered from event logs [4]. The
four dimensions are fitness, precision, generalization, and simplicity.

(able to replay event log) (Occam’s razor)

Fitness Simplicity
Process
Discovery
Generalization Precision
(not overfitting the log) (not underfitting the log)

Figure 1: Balancing the four quality dimensions [4].

Fitness and precision relate event logs and the process models discovered
from these logs. Fitness characterizes the ability of the process model to
represent the behavior captured in the event log. A model with perfect
fitness represents all the behavior contained in the corresponding event log.
Precision indicates to what extent the model underfits the log, e.g., it shows
how much of the behavior described in the model can be found in the log.
The model has perfect precision if all its behavior can be found in the log.
The generalization dimension characterizes the ability of the process model to
represent the actual behavior of the observed system, even if some behavior
of this system is not captured in the event log. Finally, simplicity refers to
the amount of effort required to understand the discovered model.

The four dimensions are defined in terms of behavior modeled as process
traces. The behavior-only focus limits the use of this framework for process
discovery methods where, in addition to behavior, the discovered models
contain structural entities such as objects, artifacts, or agents.

4.2. Behavior Sets for Precision and Recall

Precision and fitness (also known as recall), the two most commonly used
dimensions from the 4QD framework, are further articulated in the frame-
work by Buijs, van Dongen, and van der Aalst, the (BDA) framework [5],

8

through the lens of three overlapping sets of behavior in terms of process
traces: behavior of a real world system, behavior captured in an event log,
and behavior represented in a process model. A Venn diagram for the three
behavior sets is depicted in Figure 2.

Process Model (M) Event Log (L)

System (S)

Figure 2: Venn diagram showing how the behavior of the process model (M), event
log (L) and system (S) can be disjoint or overlapping [5].

The diagram identifies seven classes of traces. For example, traces in
class 1 are the traces of the system recorded in the log and described by
the model, whereas the traces in class 2 are the traces that the system does
not generate, yet recorded in the log (maybe due to a logging error) and
not described by the model (perhaps because they were suppressed by thr
discovery algorithm as noise).

The BDA framework defines model-log precision and recall, log-system
precision and recall, and model-system precision and recall quality measures
for process models discovered from event data based on the relationship be-
tween the corresponding behavioral sets. The model-system recall measure
is referred to as generalization. The behavior sets defined in BDA do not in-
clude structural entities, such as objects or agents. This prevents the direct
use of this framework for evaluating models discovered by PM algorithms
that relax the traditional PM assumptions.

4.3. Statement Sets for Conceptual Model Quality

The semiotic quality framework (SEQUAL) for discussing the quality
of conceptual models was proposed by Lindland, Sindre, and Sglvberg [8].
SEQUAL is based on Morris’ semiotics theory of signs [24]. This framework
views a conceptual model as a set of specification statements. No assumptions
or constraints are imposed on the statements. First, SEQUAL defines four

sets of statements: Model, Domain, Language, and Audience Interpretation.
A Model is a set of statements made in a conceptual model. A Domain
is a set of true statements about the domain of reality being modeled. A
Language is a set of statements that are correct according to the grammar
of the modeling language of the model. An Audience Interpretation is a
set of statements recognized by the audience in the model. Then, three
aspects of the model quality are defined as relations between the four sets:
syntactic quality relates the Model to Language, semantic quality relates
the Model to Domain, and pragmatic quality relates the Model to Audience
Interpretation. Figure 3 visualizes the SEQUAL framework as a graph with
four nodes corresponding to the sets and three edges corresponding to the
quality aspects.

Semantics Syntax

Pragmatics

Audience
Interpretation

Figure 3: The SEQUAL framework [§].

SEQUAL was extended for assessing the quality of process models in an
organizational context [15|. This extension introduces a dynamic perspective
where an organization changes a problem domain by performing business
activities specified in process models. It creates the need to update the
process models. Neither the initial SEQUAL nor its process model extension
considers scenarios where process models are created or updated based on
data. This gap needs to be addressed when using this framework in the PM
context.

4.4. Iterative Ontology-Based Representation of Real World

Wand and Weber formulated the representational model of an informa-
tion system [16]. The key working premise of this model is that an informa-
tion system is someone’s representation of a real world system. Information
system analysis, design, and implementation are viewed as an iterative pro-
cess of creating representations of a real world system in the form of data
in an information system. These representations are called scripts. The

10

initial iterations create less formal human-oriented scripts. Each new itera-
tion transforms the previously created script into a more formal and detailed
script. The final iterations produce machine-oriented scripts that machines
can use to process information. This idea of iterative transformations of
representation scripts is visualized in Figure 4.

e - .
i : ,'/ k A
i i i i
1 1 . !
Real . i . H ! Machine ¢
World Script 1 r: Script n :—P’,\ World !
i i i i
i i N !
Real-World/ Information-Systems/
Human-Oriented ¥ Machine-Oriented
Scripts Scripts

Figure 4: The representational model of an information system [16].

The scripts at different iterations of the representation process are ex-
pressed in different languages. These languages have different vocabularies
and levels of abstraction and describe invariants of real world structure and
behavior. In computer science, an ontology of a domain defines established
facts, concepts, and relationships between them for the purpose of transi-
tioning between different domain representations [25]. In this approach, an
ontology developed by Bunge [9] is used to identify elements of a real world
system preserved in transitions between the iterations so that the produced
scripts can be linked and compared.

4.5. Data Quality through Ontology-Based Representation and Interpretation

Wand and Wang proposed a data quality framework that extended the
representational model based on Bunge’s ontology [10]. We call it the Bunge-
Wand-Wang (BWW) data quality framework (see Figure 5).

BWW includes the representation process that produces an information
system containing data about a real world system. The framework also
introduces the direct observation and interpretation processes. In the former,
the user constructs a view of the system by directly observing it. In the latter,
the user’s view of the system is inferred from data in an information system.
The BWW framework defines a data deficiency as a difference between the
direct and inferred user views. Bunge’s ontology [9] is used to compare real
world entities present in the two views, identify data deficiencies, and group
the deficiencies into several categories and quality dimensions.

11

User’s
View of
RW System

Possible Data Deficiencies

Direct Observation

User’s View of
RW System as
inferred from the IS

Perception of the
Real World (RW)
System

Representation Interpretation

Information System

(1s)

Figure 5: The BWW data quality framework [10].

..

i ti Checkup : : Exercises ;
patient ; H | i
i P i
‘. il_>i [yoga] [physio] [swim] :
i P @ @ ® !
! ; ‘~ ----------------------- - - LT -- -
1 .
Q—}: '—p@ patient doctor d3 doctor d5
i !
start : i terminate @ @ @
| st T
. : : patient doctor d2_doctor d4 |
eﬁ,)) i '; [B-test] [U-sound] [X-ray] i
doctor d1 discharge [:
1 i

3§ — R S

Figure 6: A schematic visualization of the example health surveillance system [12].

5. Motivating Example

This section introduces an example agent-based model of a hypothetical
health surveillance process, discovered from event data by Agent Miner, a
non-traditional process discovery algorithm grounded in the Agent-Based
Modeling paradigm [12]. We use this example in the remainder of this paper
to illustrate how the SOLID-M framework can be instantiated to analyze the
quality of discovered agent-based models.

Figure 6 shows a schematic visualization of the hypothetical health surveil-
lance system. We observe this system from an agent-based point of view as a
distributed process emerging from interactions of five agents within a Multi-
Agent System (MAS). The five agents are doctors d1 to d5 belonging to agent
types al, a2, and a3. The agents perform patient diagnostics and preventive

12

physical activities. Doctor d1 (agent type al) performs four activities in the
‘Checkup’ group. Doctors d2 and d4 (agent type a2) perform three activities
in the ‘Tests’ group. Doctors d3 and d5 (agent type a3) perform three activ-
ities in the ‘Exercises’ group . In addition to performing their activities, the
agents interact, as shown in Figure 6.

The end-to-end patient health surveillance process emerges as a result of
the agent interactions and activities. A patient case is an instance of this end-
to-end process representing one episode of checking health for one patient.
A case trace is a sequence of events associated with the same patient case
where each event is an instance of an activity performed by a corresponding
agent type. A typical case trace can be represented as the following sequence
of (agent type, activity) pairs: ((al,check), (al,analyze), (al,prescribe),
(a2, B-test), (a2, U-sound), (al,check), (al,analyze), (al,prescribe),
(a3,yoga) , (a3, physio) , (al, check) , (al, discharge)).

Event data representing multiple case traces produced by the example
MAS over a period of time is captured in the example event log. A fragment
of this log is presented in Table 1. Each line in the event log represents several
facts about structure and behavior elements related to one event produced by
the MAS. For example, the first row in the table provides facts about event
el that happened in case c0 and was produced by agent type al performing
activity ‘check’ at time ‘0:00’.

Table 1: A fragment of the example event log.

Event Case Activity Agent Time

el c0 check al 0:00
e2 c0 discharge al 1:01
e3 cl check al 2:02
ed cl analyze al 3:03
eb cl prescribe al 4:04
eb cl B-test a2 5:05
e7 cl X-ray a2 6:06
e8 cl swim a3 7:07
e9 cl physio a3 8:08
el0 cl check al 9:09

ell cl discharge al 10:10

The Agent Miner algorithm uses the example event log to discover the
MAS model comprising four Petri nets: one interaction net and three agent
nets. These four nets are shown in Figure 7. The interaction net contains
three labeled transitions (al, a2, and a3) that correspond to the agent types
and two paths between transitions (from al to a2 and from al to a3) that
correspond to the interfaces between the agent types. Each agent net repre-
sents a local process executed by the respective agent type. For example, the

13

four labeled transitions of agent net al correspond to the activities executed

by agent type al.

@—>-—>O—>IL>O—>-—>O

a) Interaction net

-—>O—>T <f-»o O

Q) -ﬁéaé <I>~L

(b) Agent net al c) Agent net a2 d) Agent net a3

Figure 7: A MAS model comprising one interaction net and three agent nets.

These nets can be composed into the MAS net by refining the labeled
transitions in the interaction net with the corresponding agent nets [12].

We aim to answer the following questions about the quality of the MAS
model discovered by Agent Miner:

a) How well does the model represent the local behavior of each agent
type?

b) How well does the model represent the structural elements of the MAS
(agent types and interfaces)?

¢) How easily can a model user recognize the agent types and interfaces
represented in the model?

The traditional quality measures used in the process mining community
(e.g., fitness and precision as defined in the BDA framework) are inadequate
for addressing these questions, as they are not grounded in an agent-based
ontology. These measures are not formulated in terms of agents, their inter-
faces, or their local processes. In the following section, we introduce a generic
quality framework that overcomes this limitation.

6. The SOLID-M Framework

This section presents the SOLID-M framework, an ontology-aware quality
framework for conceptual models mined from event data. Section 6.1 intro-
duces the key concepts and components of the framework, and outlines how

14

they fit together. Next, Section 6.2 describes the modeling process assumed
by the framework. Finally, Section 6.3 and Section 6.4 discuss the modeling
artifacts and quality aspects of the SOLID-M framework, respectively.

We use the health surveillance example introduced in Section 5 to show
how the framework elements can be instantiated to assess the quality of
agent-based models discovered from event data. The full specifications of all
the example artifacts developed in this example framework instantiation are
publicly available [26].

6.1. Overview

SOLID-M addresses the need of the PM community to evaluate mod-
els discovered using non-traditional methods, going beyond the single-case-
notion, single-control-flow view of the world. The cornerstone of the SOLID-M
framework is the idea of a model as a set of specification statements describ-
ing system behavior and structure, where the statements are expressed in
some modeling language (e.g., Petri nets) and grounded in some ontology
(e.g., an agent-based ontology). Guided by this idea, our framework defines
six types of modeling artifacts as sets of statements, namely the System,
Ontology, Language, Interpretation, Data, and Model sets; the first letters
of the six types of artifacts form the framework name, SOLID-M. These ar-
tifacts are produced by modeling activities of the ontology-aware modeling
process presented in Figure 8. This modeling process provides a context for
the main component of the SOLID-M framework, the quality aspects graph
depicted in Figure 9.

The analyst scope boundary

n| Represent
"l system
Specify Interpret Interpret .

@ED—'—’ Ontology Ontology Data Model Interpretation
|
|
|
|

Select |

»

"l Language |
|

Figure 8: The SOLID Model quality framework: the ontology-aware modeling pro-
cess.

15

Semantic
model quality

Ontological Semantic

Ontological
language quality

data quality
Ontology Language
©) L
Semantic Syntactic

ontology quality model quality

Interpretation
0}

Pragmatic
model quality

Interpretational
model quality

Figure 9: The SOLID Model quality framework: the quality aspects graph.

The SOLID-M ontology-aware modeling process is a sequence of modeling
activities. The inputs and outputs of the activities are modeling artifacts. In
the figure, the activities and artifacts are depicted as rectangles and ovals,
respectively. Each activity is linked to its input and output artifacts by
inbound and outbound arrows. The process participants are either model
authors (the analysts) or model users (the audience). The dashed frame
marks the boundary of the analysts’ control. All activities and their output
artifacts inside the dashed box are produced by the analyst. An analyst cre-
ates the Model artifact by performing the Specify Ontology, Select Language,
Represent System, and Interpret Data activities. The Model produced by the
analyst is interpreted by the audience in the Interpret Model activity to gain
a better understanding of the modeled real world System artifact they are
interested in. The Interpretation artifact represents the understanding of
the System achieved by the audience as a result of performing the Interpret
Model activity.

The SOLID-M quality aspects graph (Figure 9) is a directed graph, where
nodes and edges correspond to the SOLID-M modeling artifacts and quality
aspects, respectively. A quality aspect is a grouping of quality characteristics
indicating a dependency between two modeling artifacts. Each quality aspect
is associated with one source-target pair of related modeling artifacts, where
the target artifact depends on the source artifact. A quality characteristic is
the characteristic of the quality of the corresponding target artifact relative to
the corresponding source artifact. For example, the “Interpretational model

16

quality” aspect is a group of quality characteristics that characterize the
Model artifact relative to the Data artifact. This aspect is associated with
the (Data, Model) pair, where Model (the target artifact) depends on Data
(the source artifact). The quality characteristics grouped under this aspect,
like precision and recall, indicate the quality of Model relative to Data.

Multiple quality measures can be defined for each SOLID-M quality char-
acteristic. To define these measures explicitly, the source and target artifacts
associated with each characteristic are understood as sets of statements. A
statement expresses a fact, a conceptual construct, or an opinion in some lan-
guage. For example, Model and Data artifacts are viewed as sets of model
and data statements, respectively. The content and structure of the state-
ments depend on an ontology selected by the analyst. The statements in all
the sets are grounded in the same ontology of choice. This makes it possi-
ble to compare statements across different sets and define quality measures
based on the set intersections, unions, and differences.

All target artifacts for any quality aspect in Figure 9 are the outputs of
the modeling activities performed by the analysts (i.e., the activities inside
the dashed box in Figure 8). Thus, the quality characteristics associated
with any aspect defined in SOLID-M are used to reason about the quality of
the Model, Data, Language, and Ontology artifacts produced or used by the
analysts.

The SOLID-M framework cannot be used directly. It should be instan-
tiated for the given types of real world systems and modeling objectives.
The framework defines the statement sets and quality aspects and guides the
definition of the quality characteristics and measures. The characteristics
suggested here as part of the quality aspect descriptions are examples only
that are intended to aid a better understanding of the corresponding aspects.

An instantiation of the framework starts by choosing the types of real
world systems of interest and specifying the ontology that defines the con-
cepts, relations, and constraints constituting the Ontology set. Then, the
instantiation defines the quality characteristics and measures grounded in
the specified ontology. For example, Figure 6 illustrates a real world system
of interest for our example SOLID-M instantiation. In this instantiation,
we choose to reason about this system of interest as a MAS of interacting
agents. Thus, we define “MAS”, “Agent”, and related concepts in our example
ontology as specified in the UML class diagram depicted in Figure 10.

17

geslr
Case_Trace < > MAS
] [

isPartOf isPartof
isPartof ‘ ‘ isPartof
> Interaction happensOver > Interface
happensFor
PP ’7 ‘ ‘ isPartOf
hasNext hasNext isTo isFrom
\ \’
< >
Agent_Trace y Agent
A hasNext] A A
\2
isPartOf. isProducedBy
happensFor Event isPerformedBy
‘ ’7happensFor isProduced By“ ‘
\ \ ‘ ‘ \%
L~ At isPalof isProducedBy Activity

Figure 10: A UML class diagram specifying the example ontology.

6.2. Modeling Process

SOLID-M is based on the assumption that creation of conceptual models
from data follows the modeling process depicted in Figure 8. This SOLID-M
modeling process involves five activities (rectangles) and six artifacts (ovals).
Multiple iterations of this process are possible, with each iteration producing
an improved modeling artifact.

The “System” oval in Figure 8 is the input to the first step of the process,
“Specify Ontology”, because it denotes an implicit, informal understanding
(not an explicit description in some modeling language) of a real world frag-
ment that the analyst directly observes for the purpose of modeling. The
analyst uses this implicit understanding to specify an ontology suitable for
describing the observations. Our “System” corresponds to the term “System”
in the BDA framework (Section 4.2) and the term “Domain” in the SEQUAL
framework (Section 4.3). In our example, Figure 6 informally visualizes the
example “System”, and the specified agent-based ontology is defined in the
UML diagram shown in Figure 10.

The same real world phenomena can be conceptualized using different
ontologies [17]|. For example, we can conceptualize the same observed behav-
ior as produced by a system of multiple interacting agents (an agent-based
ontology) or by a single centralized process (a process-oriented ontology).
Therefore, the first step in the SOLID-M modeling process is to specify an
ontology. The same ontological concept can be expressed in different mod-
eling languages [16]. For instance, the same process can be described using
a Petri net or a BPMN diagram. Hence, in the SOLID-M modeling process,

18

the ontology specification step is followed by the language selection step.

The “Represent System” and “Select Language” activities can be per-
formed by the analyst in parallel, producing Data and Language artifacts
based on direct observations of the system of interest and concepts from the
specified ontology. The event log fragment in Table 1 and the language meta-
model presented in Figure 11 demonstrate the Data and Language artifacts
for our example instantiation of the framework.

The example ontology metamodel and the example language metamodel
are specified in two separate diagrams (Figures 10 and 11) because the con-
cepts they present differ in nature. Figure 10 specifies ontological terms that
conceptualize entities in the real world, while Figure 11 specifies language
concepts that are used to define the language syntax and grammar. In ad-
dition, the same ontology may correspond to several modeling languages, so
defining the ontological concepts in a separate diagram allows using the same
version of Figure 10 across multiple alternative modeling languages, with the
one shown in Figure 11 being one example.

isPartof—>| MAS_Model
| Interface_Path [—i Interaction_Net <
| isPartOf _|
isPartOf
isPartOf ‘ |
| refines
tartsAt isPartOf
Path_ltem - [Agent_Net
i endsAt SSUbClassOf Agent_Transition isSubClassOf isPartOf
hasNext
) \% €7 isSubClassOf
pointsTo > Labelled_Transition < isSubClassOf Activity_Transition
% \ \Y
Element isPartOf Workflow_Net
haslnitial
isSubClassOf A \‘/
isSubClassOf %7 isPartOf
I Marking
hasNext
Arc Transition <—fires Firing N A
hasPrev
‘ \
‘ isFrom isSubClassOf \/produces)
isSubClassOf isTo \‘/ consumes isPartOf
-1
L> Node > Token isPartOf
\2
Zﬁ Place describes Place_State

isSubClassOf ——

Figure 11: A UML class diagram specifying concepts used in the Language set
(white and gray boxes are Agent Miner specific and traditional Petri net concepts,
respectively).

The “Interpret Data” activity generates a Model artifact. This activity is

19

automated by the Agent Miner algorithm [12] in our example. It discovers the
example Model artifact, a MAS model containing four Petri nets, as shown
in Figure 7. This MAS model is discovered from the example event log
(Table 1) and modeled using agent-based Petri nets defined by the language
metamodel in Figure 11.

The final activity of the process is “Interpret Model”. It results in the In-
terpretation artifact. In this activity, a model user creates their understand-
ing of the model by interpreting the Model artifact created in the previous
step. User understanding of the model may be incomplete due to missing
model elements. In our example, the better the user understands the model,
the closer the Interpretation artifact is to the example model in Figure 7.

6.3. Modeling Artifacts

To use the SOLID-M modeling artifacts in model quality assessments,
these artifacts need to be presented as sets of logical statements using the
same formal language so that statements from different sets can be compared
and reasoned about in a consistent way. We use Description Logic statements
expressed in the Manchester OWL notation [27] as a language for statements
of the SOLID-M modeling artifact sets. This notation is used because it
can be understood by users with no Description Logic background, and pro-
cessed by OWL tools for formal reasoning and visualization [20]. The full
OWL specification of all artifact sets for the example agent-based SOLID-M
instantiation is publicly available [26].

From the Description Logic formalism perspective, the artifact sets can
be grouped into two types: TBox sets and ABox sets. The statements in the
ABox sets are assertions about the individual facts associated with a single
observation of the system of interest. Different observations may produce
different corresponding ABox sets. The TBox sets contain terminological
axioms that define the concepts and relations constituting the vocabulary
for constructing the ABox sets. The TBox sets are constructed first, as they
provide the conceptual constructs for the ABox sets. Inspired by the onto-
logical meta-modeling framework proposed by Yonglin et al. [28], we define a
TBox set using a UML class diagram and translate it into the corresponding
Manchester OWL statements. The use of UML offers a concise yet formal
representation that simplifies the understanding of a TBox set as a whole
and can be unambiguously translated into OWL. The SOLID-M artifact sets
are defined as follows.

20

System (S) is the set of all true statements about the individual elements
included in the real world system of interest. The audience and analysts
perceive this set as an area of the real world that is relevant to modeling
goals. This set is an assertion box (ABox) that postulates true facts about
the system’s individual elements. Our example System set is constructed
based on the informal description of the system provided in Figure 6. We
assume this is a true description of the actual system and convert it into the
formal OWL statements of the System set using the concepts defined in the
terminological axioms of the example Ontology set OWL TBox (see Table 2).
A fragment of the System set OWL ABox is presented in Table 3.

Table 2: A fragment of the Ontology set in Manchester OWL.

5

Ontology set statement

Class: o:Event

Class: o:Agent

Class: o:Agent Trace

Class: o:Activity

Class: 0:MAS

ObjectProperty: o:isProducedBy Domain: o:Event Range: o:Agent
ObjectProperty: o:isProducedBy Domain: o:Event Range: o:Activity
ObjectProperty: o:isPartOf Domain: o:Event Range: o:Agent Trace
ObjectProperty: o:isPerformedBy Domain: o:Activity Range: o:Agent
ObjectProperty: o:isPartOf Domain: o:Activity Range: 0:MAS

= QO 00U EAs WN

(==}

Ontology (O) is the set of statements that explicitly define the con-
structs (concepts and relationships) and constraints in the real world. This
set describes the common terminology (TBox), the vocabulary that is used
to compare the statements in the other five sets of the framework. The
analysts specify this set in formal knowledge representation (e.g., OWL or
RDFS) or meta-modeling (e.g., UML) languages. Figure 10 demonstrates
the UML class diagram for our example Ontology set. UML classes and
named uni-directional associations define TBox concepts and relations, re-
spectively. For example, the ‘isPerformedBy’ relation between the ‘Activity’
and ‘Agent’ concepts of the Ontology set is represented in Figure 10 as the
‘isPerformedBy’ association line from the ‘Activity’ class box to the ‘Agent’
class box. We do not specify cardinality constraints in our TBox sets. This
way, we keep the diagram simple and adaptable to various instantiations of
the cardinality constraints. Table 2 shows a fragment of the example Ontol-
ogy set in the Manchester OWL syntax. This fragment defines five concepts
as OWL classes (statements 1 to 5) and five relations as OWL object proper-
ties (statements 6 to 10). One OWL class is defined for each UML class, and

21

one OWL object property is defined for each UML association. For example,
statement 9 corresponds to the association ‘isPerformedBy’ from the class
‘Activity’ to the class ‘Agent’. These two classes are specified in statements
4 and 2, respectively.

Table 3: A fragment of the System set in OWL.

ID System set statement in Manchester OWL

Individual: al Types: o:Agent

Individual: a2 Types: o:Agent

Individual: a3 Types: o:Agent

Individual: ifc_al a2 Types: o:Interface Facts: o:isFrom al, o:isTo a2

Individual: ifc_al a3 Types: o:Interface Facts: o:isFrom al, o:isTo a3

Individual: ifc_a2 al Types: o:Interface Facts: o:isFrom a2, o:isTo al

Individual: ifc_a3_al Types: o:Interface Facts: o:isFrom a3, o:isTo al

Individual: check Types: o:Activity Facts: o:isPerformedBy al

Individual: c0 Types: o:Case

Individual: interactionl Types: o:Interaction Facts: o:happensOver ifc _al a2, o:hasNext atracel

Individual: atracel Types: o:Agent Trace Facts: o:happensFor c0, o:isProducedBy al, o:hasNext interactionl
Individual: el Types: o:Event Facts: o:isProducedBy check, o:happensFor c0, o:isPartOf atracel, o:hasNext e2
Individual: patioentl

Individual: doctor2

~N O T W N~

== = = = O 00
=W N = O

Language (L) is the set of statements that explicitly define the con-
structs (concepts and relationships) and constraints of a modeling language.
It specifies the grammar of the language used to construct the model. This
set describes the terminology (TBox) that enables ontological analysis of
the modeling grammar and syntactic verification of the model. Figure 11
and Table 4 present the UML class diagram and a fragment of the OWL
TBox for the example Language set. The set includes generic Petri net
concepts (e.g., ‘Transition’, ‘Place’, “‘Workflow Net’) and concepts specific
to the agent-based models discovered by Agent Miner (e.g., Agen Net,
Agent Transition, MAS Model). In addition to UML associations, the
Language set UML diagram uses UML generalization to specify sub-class
relations between the language concepts. For example, ‘Agent Net’ is a
sub-class of ‘Workflow Net’.

Interpretation (I) is the set of statements that the audience acknowl-
edges and/or understands in the model. The statements in this set reflect a
subjective audience’s view of the real world area postulated by the System
set. This set is an assertion box (ABox) that articulates the audience’s inter-
pretation of the statements in the Model set. In our example, we assume that
the user incorrectly associates the B-test activity with agent a3 and does not
recognize the interface from al to a2. A fragment of the example Interpreta-

22

Table 4: A fragment of the Language set in Manchester OWL.

5

Language set statement

Class: L:Firing

Class: l:Agent Net

Class: 1:Agent_ Transition

Class: l:Activity _Transition

Class: :MAS Model

Class: l:Transition

ObjectProperty: l:fires Domain: l:Firing Range: l:Transition

ObjectProperty: l:isPartOf Domain: 1:Activity Transition Range: 1:Agent Net
ObjectProperty: l:isPartOf Domain: 1:Agent Net Range: :MAS Model
ObjectProperty: Lirefines Domain: l:Agent Net Range: l:Agent 'Transition

= © 00~ Utk WN

o

tion set OWL ABox in Table 5 represents this incorrect interpretation by the
user. If a user had a complete understanding of the MAS model discovered
by Agent Miner, then the Interpretation set OWL ABox would be identical
to the Model set OWL ABox.

Table 5: A fragment of the Interpretation set in OWL.

ID Model set statement in Manchester OWL

Individual: al Types: o:Agent

Individual: a2 Types: o:Agent

Individual: a3 Types: o:Agent

Individual: prescribe Types: o:Activity Facts: o:isPerformedBy al
Individual: analyze Types: o:Activity Facts: o:isPerformedBy al
Individual: yoga Types: o:Activity Facts: o:isPerformedBy a3
Individual: check Types: o:Activity Facts: o:isPerformedBy al
Individual: B-test Types: o:Activity Facts: o:isPerformedBy a3
Individual: swim Types: o:Activity Facts: o:isPerformedBy a3
Individual: U-sound Types: o:Activity Facts: o:isPerformedBy a2
Individual: ifc_al a3 Types: o:Interface Facts: o:isFrom al, o:isTo a3

=1 O U= W N

= = O
—_ O

Data (D) is the set of all statements recorded during observations of the
real world system. This set is used as input for model discovery techniques.
A common way to specify this set is an event log with individual event
attributes used as the set statements. This set is an assertion box (ABox)
containing facts about individual real world objects represented by events
captured by the information system. Table 6 shows a fragment of the Data
set OWL ABox. It is a translation of the given event log to OWL using
the terminology defined in the Ontology set. Every line in the event log has
a corresponding event statement in the Data set. For example, the event
log lines 1, 4, and 5 in Table 1 correspond to OWL statements with IDs 9,
10, and 11 in Table 6. Instead of using the time attribute, the OWL object
property “hasNext” is used in the OWL statements to indicate ordering of
events, because the Ontology defines this object property and does not define

23

any time relationships for events. For example, the “hasNext” property in
line 8 of the Data set OWL (Table 1) specifies that the next event after event
el is event e2.

Table 6: A fragment of the Data set in OWL.

ID Data set statement in Manchester OWL

Individual: al Types: o:Agent

Individual: a2 Types: o:Agent

Individual: a3 Types: o:Agent

Individual: check Types: o:Activity Facts: o:isPerformedBy al

Individual: B-test Types: o:Activity Facts: o:isPerformedBy a2

Individual: swim Types: o:Activity Facts: o:isPerformedBy a3

Individual: c¢0 Types: o:Case

Individual: ¢1 Types: o:Case

Individual: el Types: o:Event Facts: o:happensFor c0, o:isProducedBy check, o:isProducedBy al, o:hasNext e2
Individual: e4 Types: o:Event Facts: o:happensFor c0, o:isProducedBy B-test, o:isProducedBy a2, o:hasNext eb
Individual: e5 Types: o:Event Facts: o:happensFor c0, o:isProducedBy swim, o:isProducedBy a3, o:hasNext e6

== 0 00~ O Ul W N

= o

Model (M) is the set of all statements about the system inferred from
the data. This set is an assertion box (ABox) containing facts about the
individual objects discovered from the statements in the Data set. The state-
ments in this set are formulated using the mapping between the terminology
of the modeling grammar defined in the Language set and the terminology
from the Ontology set. Table 7 shows a fragment of the resulting Model set
OWL ABox constructed from the MAS model of four Petri nets discovered by
Agent Miner (Figure 7). We use the mapping between the concepts defined
in the Ontology and Language sets to convert the elements of the discov-
ered Petri nets into the corresponding OWL statements of the Model set.
For example, the “Agent” from the Ontology is mapped to “Agent_Net” and
“Agent_Transition” in the Language. The full ontology-to-language mapping
and corresponding Python code are publicly available [26].

6.4. Quality Aspects

The quality aspects graph (Figure 9) represents all quality aspects and
modeling artifacts defined in the SOLID-M framework. The graph edges and
nodes correspond to the quality aspects and modeling artifacts, respectively.
Each aspect groups quality characteristics and measures.

In the remainder of this section, we provide definitions for all SOLID-M
quality aspects. The quality aspect definitions are accompanied by examples

of agent-based quality characteristics and measures over the instantiation of
the SOLID-M artifact sets described in Section 6.2.

24

Table 7: A fragment of the Model set in OWL.

B

Model set statement in Manchester OWL

Individual: al Types: o:Agent

Individual: a2 Types: o:Agent

Individual: a3 Types: o:Agent

Individual: prescribe Types: o:Activity Facts: o:isPerformedBy al
Individual: analyze Types: o:Activity Fa o:isPerformedBy al
Individual: yoga Types: o:Activity Facts: o:isPerformedBy a3
Individual: check Types: o:Activity Facts: o:isPerformedBy al
Individual: B-test Types: o:Activity Facts: o:isPerformedBy a2

9 Individual: swim Types: o:Activity Facts: o:isPerformedBy a3

10 Individual: U-sound Types: o:Activity Facts: o:isPerformedBy a2

11 Individual: ifc_al a2 Types: o:Interface Facts: o:isFrom al, o:isTo a2
12 Individual: ifc_al a3 Types: o:Interface Facts: o:isFrom al, o:isTo a3

00 =] O Ut = W N —

All the example measures are grounded in the ratio model for similarity
between two sets proposed by Tversky [29]. In addition, the measures related
to the Ontology set (LOCC, OSCC, and DOCC) are the adaptations of the
semantic coverage of ontology measures proposed in the Quality Model of
Ontology for Semantic Descriptions of Web Services [30]. The presented
recall measures (MSSR, DSSR, and MDSR) are derived from the three set-
theoretical recall measures defined in the BDA framework [5]. Each of the
proposed measures can take values between zero and one. Zero and one
correspond to the lowest and the highest levels of the related characteristic,
respectively.

The example measures are linked to MAS structure elements. These
elements are conceptualized as agents and interfaces connecting the agents
in the given Ontology set. Table 8 shows the OWL statements for all system
structure elements in the example System, Data, and Model sets.

Table 8: Structure elements in the example System, Data, and Model sets.

Structure element OWL statement In System In Data In Model
Individual: al Types: o:Agent Yes Yes Yes
Individual: a2 Types: o:Agent Yes Yes Yes
Individual: a3 Types: o:Agent Yes Yes Yes
Individual: ifc_al a2 Types: o:Interface Facts: o:isFrom al, o:isTo a2 Yes No Yes
Individual: ifc_al a3 Types: o:Interface Facts: o:isFrom al, o:isTo a3 Yes No Yes
Individual: ifc_a2_al Types: o:Interface Facts: o:iskFrom a2, o:isTo al Yes No No
Individual: ifc_a3_al Types: o:Interface Facts: o:isFrom a3, o:isTo al Yes No No

Semantic Model Quality This aspect focuses on the effectiveness of
the Model in depicting the System to achieve modeling objectives. Gener-
alization is an example of a semantic quality characteristic existing in the

25

process mining literature [4]. It characterizes the validity of the model in
relation to the system as the proportion of the statements in the Model set
that are also present in the System set. We propose Model-System Structural
Completeness as a possible characteristic for this quality aspect. This charac-
teristic describes the extent to which the model represents the actual system
structure. It can be measured by Model-System Structure Recall (MSSR).
We define this measure as MSSR = |S; N M| /|Ss|, where Sy C S is the set
of all the statements in S that specify the system structure elements (agents
and interfaces) present in reality, and M C M is the set of all statements in
M that specify the system structure elements represented in the model. Ac-
cording to Table 8, the total number of the OWL statements specifying the
system structure elements in the System set is seven (three agents and four
interfaces). The intersection of the system structure elements in the System
and Model sets has a size of five (al, a2, a3, ifc_al a2, and ifc_al a3).
Therefore, MSSR = 5/7 = 0.71. It is a good result showing that the model
correctly represents most of the system structure.

Interpretational Model Quality This aspect examines how well the
Model interprets the Data used to discover it. It is named after the interpre-
tation process from the BWW data quality model. Model-event log precision
and recall of the 4QD and BDA frameworks can be adopted as characteris-
tics for this quality aspect. Precision indicates the validity of the model in
relation to the data. It captures the proportion of statements in the Model
set that appear in the Data set. Recall indicates the completeness of the
model in relation to the data. It shows what proportion of the Data set
appears in the Model set. We propose Model-Data Structural Completeness
as an example characteristic for this aspect. This characteristic describes the
extent to which the model represents the system structure elements captured
in the data. It can be measured by Model-Data Structure Recall (MDSR).
We define this measure as MDSR = | DN M| /| Ds|, where Dy C D is the set
of all the statements in D that specify the system structure elements repre-
sented in the data, and M, C M is the set of all the statements in M that
specify the system structure elements represented in the model. According to
Table 8, Dy is a subset of M. This means |Ds N M| = |Dg| and MDSR = 1.
The model fully represents all the system structure elements captured in the
data.

Pragmatic Model Quality This aspect pertains to the degree of un-
derstanding of the model by its users. Simplicity and modularity are possible
characteristics under this aspect. Model size, defined as the number of model

26

elements, is often used as a measure of simplicity [4]. The smaller the model
size, the higher the pragmatic quality of the model. An increase in the mod-
ularity of a model enhances the understanding of the model by its users [31].
We propose System Structure Comprehension as a possible characteristic
for this aspect. This characteristic describes how well a user comprehends
the system structure as represented in the model. It is measured by De-
gree of System Structure Comprehension (DSSC). We define this measure
as DSSC = |I; U M,|/| M|, where Iy C I is the subset of the Interpretation
set I that specifies all the agents and interfaces recognized by a user, and
M, C M is the set of all the statements in M that specify all the agents
and interfaces represented in the model. As per Table 8, M, contains five
elements (al, a2, a3, ifc_al a2, and ifc_al a3). Let us assume that a user
does not recognize interface ifc_al a3. In this case, DSSC = 4/5 = 0.8.

Syntactic Model Quality This aspect concerns the correctness of the
model with respect to the syntax and grammar of the language used to de-
scribe it. One of the characteristics of this aspect is the syntactic correctness
of the model, which is measured by the number of syntactic errors in the
model. We propose Model Syntactic Correctness as an example character-
istic for this aspect. This characteristic addresses the correct use of the
modeling language syntax in the model. It is quantified using the Degree of
Correct Model Statements (DCMS) measure. DCMS = |M.|/|M|. M is the
Model set. M. C M is the subset of M containing all the statements of the
Model set that are correct according to the modeling grammar specified in
the Language set. DCMS is equal to 1, because all the statements of the
Model set are syntactically correct (i.e., |M.| = |M]|). This is a typical sit-
uation, as syntactic defects are trivial to detect and need to be fixed before
analyzing other quality aspects.

Semantic Data Quality This aspect is concerned with how well the
data used to discover the model represents the system. It is named after the
iterative process of constructing a representation of a real world system ac-
cording to the BWW representational model. The event log-system precision
and recall from the BDA framework can be adopted as possible characteristics
of this quality aspect. We propose Data-System Structural Completeness as
an example characteristic for this aspect that describes how well the data col-
lected from the system represents the system structure. This characteristic is
measured by Data-System Structure Recall (DSSR). We define this measure
as DSSR = |Ss N Ds|/|Ss|, where S, C S is the set of all the statements in
S that specify the system structure elements (agents and interfaces) present

27

in reality, and Dy C D is the set of all the statements in D that specify the
system structure elements represented in the data. According to Table 8, the
total number of OWL statements specifying the system structure elements
in the System set is seven (three agents and four interfaces). The size of the
intersection of the system structure elements in the System and Model sets is
three (al, a2, and a3). Thus, DSSR = 3/7 = 0.43. This low value indicates
that the data in the Data set does not capture the system structure well.
This result is consistent with the complete absence of the interface data in
the given event log.

Ontological Data Quality This aspect entails the degree of alignment
and conformity between the Data statements and the concepts and rela-
tionships defined by the ontology. It involves mapping the individual data
elements to the ontological constructs. Data construct correspondence can
be used as a characteristic of how well the concepts and relationships of the
chosen ontology are represented in the data. We propose Data-Ontology Con-
ceptual Completeness as an example of a characteristic for this aspect. This
characteristic concerns how well the ontology concepts are represented in data
captured from the system. It is measured by Data-Ontology Concept Cover-
age (DOCC). We define this measure as DOCC = |04|/|O.|,0¢ C O. C O,
where O is the Ontology set, O, contains all the classes in O, and O% contains
the OWL classes from O, that are explicitly instantiated in the Data set. The
event log (Table 1) and the corresponding Data set explicitly specify the in-
stances of the four classes from the Ontology set (‘Agent’, ‘Activity’, ‘Case’,
and ‘Event’). The remaining five classes (‘MAS’, ‘Interface’, ‘Interaction’,
‘Agent Trace’, and ‘Case_Trace’) are not directly represented by the data.
Thus, DOCC = 4/9 = 0.44. A value below 0.5 indicates that the data lacks
explicit information about a significant number of concepts in the ontology
(Figure 10).

Ontological Language Quality This aspect revolves around the as-
sessment of how effectively the language aligns with the ontology. It involves
an ontological analysis of the modeling grammar, which identifies construct
deficits and redundancies by mapping the metamodels of the modeling gram-
mar and ontology. We propose Language-Ontology Conceptual Completeness
as an example of a characteristic for this aspect. This characteristic assesses
how well the concepts of the ontology are represented in the modeling lan-
guage. It is measured by Language-Ontology Concept Coverage (LOCC).
We define this measure as LOCC = |0'|/|O.|, 0. C O, C O where O is the
Ontology set, O, contains all the classes in O, and O! contains the OWL

28

classes from O, that have at least one matching class in the Language set.
To calculate LOCC', we match the classes of the Ontology set to the corre-
sponding OWL classes in the Language set. Table 9 presents the Ontology
to Language class matching results. Three of the nine classes in O, (classes
with IDs 6, 7, and 9) are not matched to the Language set. The six matched
classes belong to set O'. Based on the matching, LOCC = 6/9 = 0.67. This
value indicates a high level of ontological completeness for the modeling lan-
guage, with the majority of its concepts represented. It can be improved by
adding explicit support for the trace concepts to the language.

Table 9: Class matching.

ID Ontology class Language class

1 MAS MAS_Model

2 Agent Agent Net

3 Interface Interface_ Path

4 Activity Activity_Transition
5 Event Firing

6 Agent_ Trace no match

7 Interaction no match

8 Case Token

9 Case_ Trace no match

Semantic Ontology Quality This aspect emphasizes the ability of an
ontology to provide a conceptual foundation for the system. We propose
Ontology-System Semantic Completeness as an example of a characteristic
for this aspect. This characteristic addresses the suitability of the ontology
for describing the real world system. It is measured by Ontology-System
Concept Coverage (OSCC'). We define this measure as OSCC = |S?|/|S.|
where S, is a set of all concepts required to explain the semantics of the
individual entities in the System set, and S? C S, is a subset of S, containing
the concepts explicitly defined as classes in the Ontology set. All the entities
in the System set are classified using eleven concepts (see [26]). Nine of them
are specified in the Ontology set and two, ‘Patient’ and ‘Doctor’, are assumed
for individuals with names ‘patientl’ and ‘doctor2’, respectively (Table 3).
This results in OSCC = 9/11 = 0.82. This value of OSCC points to a high
ability of the ontology to define the concepts assumed in system observations.

7. Discussion

We designed SOLID-M to overcome the limitations of traditional PM
quality measures, which cannot adequately assess models discovered by new

29

types of PM algorithms, as explained in Section 5. In our example healthcare
surveillance MAS, the traditional frameworks are unsuitable because they are
grounded in a process-oriented ontology that lacks the concepts needed to
capture structural elements (e.g., agents and their interfaces). SOLID-M
addresses this gap by introducing a generic, flexible mechanism for defining
quality measures based on an explicitly specified ontology. Using this mecha-
nism, we instantiate SOLID-M with an agent-based ontology and associated
quality measures, enabling the evaluation of MAS models in terms of agents,
their interfaces, and their local behaviors.

precedes isRelatedTo

Case Object Type
A N 1
1. .
" Y \4
isPartOf 1.% changes isinstanceOf
] O E—— Object "
1.* -

Event

* ‘

1 happensAt

1.%

isnstanceOf

Ti Activity

Figure 12: A UML diagram capturing an example object-centric ontology.

The example in Section 5 can be viewed from the Object Centric Process
Mining (OCPM) perspective [2] as a process involving four object types (pa-
tient type and three doctor types). In this case, one can create an OCPM
instantiation of SOLID-M grounded in an object-centric ontology, selecting
Object-Centric Petri Nets (OCPNs) as a modeling language. Such an object-
centric ontology is depicted in Figure 12. Consequently, OWL statements in
all sets of SOLID-M artifacts and quality measures across all SOLID-M qual-
ity aspects should be expressed in terms of the concepts from this ontology.
To assess the Interpretational Model Quality aspect of OCPN models discov-
ered from object-centric event data, one can define the Model-Data Behav-
ioral Completeness and Model-Data Structural Completeness characteristics.
These characteristics describe the extent to which OCPN models represent
behavior (case traces) and structure (objects) elements, respectively, as cap-
tured in the object-centric event logs. The behavioral completeness can be
measured using the OCPN fitness measure defined in [32]. An example of a
measure that can be used to assess the structural completeness is the object-
centric structure fitness (OCSF) OCSF = |D, N M,|/|D,|, where D, is the
subset of the Data set that contains all the statements specifying object in-
stances included in the log, and M, is the subset of the Model set with all

30

the statements specifying object instances represented in the OCPN model.
Table 10 maps the elements of SOLID-M to the elements of the existing
quality frameworks. In this table, the first column lists the SOLID-M model-
ing artifacts and quality aspects from Figure 9. The remaining four columns
list the corresponding elements of the four quality frameworks reviewed in
Section 4. For example, Data in SOLID-M corresponds to Event Log in 4QD
and BDA frameworks, and to Information System State in the BWW frame-
work. It has no corresponding element in the SEQUAL framework. If a cell
in the table contains the “no match” label, it indicates that the corresponding
SOLID-M element has no equivalent in the respective framework.

Table 10: Mapping of SOLID-M elements to elements of other quality frameworks.

SOLID-M Elements 4QD Elements BDA Elements SEQUAL Elements BWW Elements

. User’s Observed View
System System System Domain of Real World System
Ontology no match no match no match Ontology
Language no match no match Language Grammar

User’s Inferred View

Interpretation no match no match Audience Interpretation of Real World System
Data Event Log Event Log 20 match Information System
State
User’s Inferred View

Model Process Model Process Model Model of Real World System
Semantic .\ . Model - System . .
model quality Generalization Precision and Recall Semantic quality no match
Interpretational Fitness, Precision Model - Event Log no match no match
model quality Precision and Recall
Pragmatic Simplicit no match Pragmatic qualit, no match
model quality pHaty & ety
Syntactic no match no match Syntactic qualit; no match
model quality o 4 i
Ontologlcal_ no match no match no match no match
model quality
Semantic Event Log - System . RSN
data quality no match Precision and Recall "¢ match Data deficiencies
Ontologlc?.l no match no match no match no match
data quality
Ontological . no match no match no match no match
language quality
Semantic . no match no match no match no match
ontology quality
Pragmatic

no match no match no match no match

ontology quality

SOLID-M extends the BDA framework by generalizing the BDA behav-
ior sets into ontology-based statement sets. Elements of the BDA sets are
process traces. In SOLID-M, elements of the statement sets are not limited

31

to process traces. They can represent any real world entities (behavioral or
structural) formulated in terms of a given ontology. We follow the idea from
the BWW representational model to use an ontology as a reference language
that defines fundamental concepts representing the structure and behavior
of the real world. These concepts remain invariant across the languages used
for all statement sets of the SOLID-M framework. This makes it possible to
compare and reason about the statements from different sets in a consistent
manner.

In SOLID-M, the Ontology set is an explicit variable parameter. A spe-
cific SOLID-M instantiation specifies an ontology that fits the intended use.
This approach is different from the 4QD and BDA frameworks, which assume
the underlying behavior-only ontology of the single-case notion. The ability
to select an explicit ontology allows a straightforward instantiation of the
SOLID-M framework for new types of process mining. First, an ontology is
selected that supports the concepts and assumptions of the new PM type.
Then, the statements in all sets of the framework are formulated using the
concepts from the selected ontology. Finally, ontology-specific definitions of
characteristics and measures are provided for each SOLID-M quality aspect.

SOLID-M extends the SEQUAL framework by introducing the Data set
of statements and the quality aspects related to this set. We achieve this
by examining the relationships between the Model, Data, System, and In-
terpretation sets through the lenses of the representation and interpretation
processes in the BWW data quality framework. From the perspective of the
representation process, the System and Data sets of SOLID-M play the roles
of the real world system and the information system state, respectively. From
the perspective of the interpretation process, the Model and Interpretation
sets of SOLID-M play the roles of an externalized and internalized user’s
views of the real world system (the system) as inferred from the information
system state (the data). A model discovered from the data is understood
as an intermediate externalized result of the interpretation process. This is
why the SOLID-M quality aspect linking the Data and Model sets is called
“Interpretational model quality.”

The SOLID-M treatment of the interpretation process is different from
the BWW framework. In BWW, this process produces a user’s view of a
real world system directly from data captured in an information system. In
SOLID-M, the interpretation process is split into two sub-processes: (i) an
analyst interprets data to construct a conceptual model of a real world system
represented by the data using model discovery techniques, (ii) users interpret

32

the model to infer their view (interpretation) of the system.

The proposed framework has several limitations. Every quality aspect is
associated with a directed pair (source, target) of modeling artifacts, where
the quality of the target is characterized in relation to the source. Quality
measures calculated over one target artifact, such as model size measures of
pragmatic model quality, are not directly supported.

The framework does not cover the pragmatic quality of the Ontology and
Language artifacts. This excludes the definition of ontology and language
measures related to user interpretation. A possible direction for extending
SOLID-M is to define additional quality aspects, focusing on the pragmatic
quality of ontologies and modeling languages.

Our framework focuses on auto-discovered conceptual models that are in-
tended for direct use by human users. Quality characteristics and measures
specific to the Business Process Simulation (BPS) context are not considered.
SOLID-M can be extended to support BPS model quality assessment by com-
bining our ontology-aware approach with the BPS-specific multi-perspective
quality measures defined in the framework for measuring the quality of BPS
models [33].

SOLID-M addresses the quality of conceptual models discovered from
data, not discovery algorithms themselves. Quality characteristics of discov-
ery algorithms (such as time and space complexity) are important factors
in the evaluation of new PM techniques. Extending SOLID-M with quality
aspects of discovery algorithms is an interesting topic for future research.

This paper does not develop a standard reference ontology for MAS dis-
covery. A fully flagged reference ontology for data-driven agent-based model-
ing would enable improved SOLID-M instantiations for MAS model quality
assessments. A study to propose a MAS ontology and investigate represen-
tational bias for MAS discovery is future work.

8. Conclusion

This article presents SOLID-M, a quality framework for conceptual mod-
els discovered from event data. The framework enables a systematic assess-
ment of the quality of discovered models by capturing both behavioral and
structural aspects. It also supports the explicit specification of the assump-
tions underlying the techniques and measures used in model construction
and quality evaluation.

33

We provide an example of how to instantiate this framework to assess
the quality of MAS models discovered using the Agent Miner algorithm. As
the adoption of Al agents in business processes continues, we expect greater
availability of data representing the local behavior of AI and human agents
contributing to emergent system-level business outcomes. The use of agent-
based process mining techniques to generate MAS models from these data
will increase. To address the need for better ways to assess the quality of
discovered MAS models, one can extend the MAS instantiation of SOLID-M
with new quality measures that reflect the specifics of interactions between
human and Al agents across different business domains.

Acknowledgments. Andrei Tour was supported via an “Australian Gov-
ernment Research Training Program Scholarship.”

References

[1] G. Vossen, The process mining manifesto—An interview with
Wil van der Aalst, Information Systems 37 (3) (2012) 288-290.
d0i:10.1016/j.is.2011.10.006.

[2] W. M. P. van der Aalst, A. Berti, Discovering object-centric Petri nets,
Fundamenta Informaticae 175 (1-4) (2020) 1-40. doi:10.3233,/F1-2020-
1946.

[3] W. Bandara, G. G. Gable, M. Rosemann, Factors and measures of
business process modelling: Model building through a multiple case
study, European Journal of Information Systems 14 (4) (2005) 347-360.
d0i:10.1057/PALGRAVE.EJIS.3000546.

[4] W. M. P. van der Aalst, Process Mining: Discovery, Conformance and
Enhancement of Business Processes, Springer, 2011. doi:10.1007/978-3-
642-19345-3.

[5] J. C. A. M. Buijs, B. F. van Dongen, W. M. P. van der Aalst, Quality
dimensions in process discovery: The importance of fitness, precision,
generalization and simplicity, International Journal of Cooperative In-
formation Systems 23 (1) (2014). doi:10.1142/S0218843014400012.

[6] A. Tour, A. Polyvyanyy, A. A. Kalenkova, Agent system mining: Vi-
sion, benefits, and challenges, ITEEE Access 9 (2021) 99480-99494.
doi:10.1109/ACCESS.2021.3095464.

34

[7] A. Senderovich, M. Weidlich, A. Gal, A. Mandelbaum, Queue mining for
delay prediction in multi-class service processes, Information Systems 53
(2015) 278-295. doi:10.1016/j.i5.2015.03.010.

[8] O. I. Lindland, G. Sindre, A. Sglvberg, Understanding qual-
ity in conceptual modeling, IEEE Software 11 (2) (1994) 42-49.
d0i:10.1109/52.268955.

[9] M. Bunge, Ontology I: The Furniture of the World, Treatise on Basic
Philosophy, Springer Netherlands, 1977. doi:10.1007/978-94-010-9924-0.

[10] Y. Wand, R. Y. Wang, Anchoring data quality dimensions in ontolog-
ical foundations, Communications of the ACM 39 (11) (1996) 86-95.
doi:10.1145/240455.240479.

[11] T. Jiang, Z. Sun, S. Fu, Y. Lv, Human-AT interaction research agenda:
A user-centered perspective, Data and Information Management 8 (4)
(2024) 100078. doi:10.1016/j.dim.2024.100078.

[12] A. Tour, A. Polyvyanyy, A. A. Kalenkova, A. Senderovich, Agent miner:
An algorithm for discovering agent systems from event data, in: Business
Process Management, Vol. 14159 of Lecture Notes in Computer Science,
Springer, 2023, pp. 284-302. do0i:10.1007,/978-3-031-41620-0 17.

[13] K. Peffers, T. Tuunanen, M. A. Rothenberger, S. Chatterjee, A de-
sign science research methodology for information systems research,
Journal of Management Information Systems 24 (3) (2007) 45-77.
doi:10.2753/MIS0742-1222240302.

|14] K. Peffers, M. Rothenberger, T. Tuunanen, R. Vaezi, Design science
research evaluation, no. v.7286 in Lecture Notes in Computer Science,
Springer, 2012, pp. 398-410.

[15] J. Krogstie, G. Sindre, H. Jgrgensen, Process models represent-
ing knowledge for action: A revised quality framework, FEu-
ropean Journal of Information Systems 15 (1) (2006) 91-102.
doi:10.1057/PALGRAVE.EJIS.3000598.

[16] Y. Wand, R. Weber, Toward a theory of the deep structure of infor-
mation systems, in: International Conference on Information Systems,
Association for Information Systems, 1990, p. 3.

35

[17]

18]

[19]

20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

N. Guarino, D. Oberle, S. Staab, What is an ontology?, in: Handbook on
Ontologies, International Handbooks on Information Systems, Springer,
2009, pp. 1-17. doi:10.1007/978-3-540-92673-3 0.

L. von Bertalanffy, An outline of general system theory, The British
Journal for the Philosophy of Science 1 (2) (1950) 134-165.

G. Antoniou, F. van Harmelen, Web ontology language: OWL, in:
Handbook on Ontologies, International Handbooks on Information Sys-
tems, Springer, 2009, pp. 91-110. doi:10.1007/978-3-540-92673-3 4.

J. Méndez, C. Alrabbaa, P. Koopmann, R. Langner, F. Baader,
R. Dachselt, Evonne: A visual tool for explaining reasoning with
OWL ontologies and supporting interactive debugging, Computer
Graphics Forum 42 (6) (2023). doi:10.1111/CGF.14730.

W. M. P. van der Aalst, Object-centric process mining: Dealing with
divergence and convergence in event data, in: Software Engineering and
Formal Methods, Vol. 11724 of Lecture Notes in Computer Science,
Springer, 2019, pp. 3-25. do0i:10.1007,/978-3-030-30446-1 1.

P. P.-Y. Wu, C. Fookes, J. Pitchforth, K. Mengersen, A framework for
model integration and holistic modelling of socio-technical systems, De-
cision Support Systems 71 (2015) 14-27. do0i:10.1016,/J.DSS.2015.01.006.

R. Pérez-Castillo, F. Ruiz, M. Piattini, A decision-making support sys-
tem for Enterprise Architecture Modelling, Decision Support Systems
131 (2020) 113249. doi:10.1016/J.DSS.2020.113249.

C. W. Morris, Writings on the General Theory of Signs, no. 16 in Ap-
proaches to Semiotics, De Gruyter, 2014.

J. Krogstie, Model-Based Development and Evolution of Information
Systems, Springer, 2012. doi:10.1007/978-1-4471-2936-3.

A. Tour, A. Polyvyanyy, A. A. Kalenkova, SOLID-M instantiation ex-
ample (2025).
URL https://doi.org/10.26188/25458967 .v4

M. Horridge, N. Drummond, J. Goodwin, A. L. Rector, R. Stevens,
H. Wang, The manchester OWL syntax, in: OWL: Experiences and

36

28]

[29]

[30]

[31]

[32]

[33]

Directions, Vol. 216 of CEUR Workshop Proceedings, CEUR-WS.org,
2006.

L. Yonglin, Z. Zhi, L. Qun, An ontological metamodeling framework for
semantic simulation model engineering, Journal of Systems Engineering
and Electronics 31 (3) (2020) 527-538. do0i:10.23919/JSEE.2020.000032.

A. Tversky, Features of similarity, Psychological Review 84 (4) (1977)
327-352. doi:10.1037/0033-295X.84.4.327.

H. Zhu, D. Liu, I. Bayley, A. Aldea, Y. Yang, Y. Chen, Qual-
ity model and metrics of ontology for semantic descriptions of web
services, Tsinghua Science and Technology 22 (3) (2017) 254-272.
d0i:10.23919/TST.2017.7914198.

H. A. Reijers, J. Mendling, Modularity in process models: Review and
effects, in: Business Process Management, Vol. 5240 of Lecture Notes
in Computer Science, Springer, 2008, pp. 20-35. doi:10.1007/978-3-540-
85758-7_5.

J. N. Adams, W. M. P. van der Aalst, Precision and fitness in object-
centric process mining, in: International Conference on Process Mining,
IEEE, 2021, pp. 128-135. doi:10.1109/ICPM53251.2021.9576886.

D. Chapela-Campa, I. Benchekroun, O. Baron, M. Dumas, D. Krass,
A. Senderovich, A framework for measuring the quality of business
process simulation models, Information Systems 127 (2025) 102447,
doi:10.1016/J.15.2024.102447.

37

