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Abstract

In Process Mining (PM), �high-level� conceptual models of business processes,
in the form of directly-follows graphs, Petri nets, and �nite-state automata,
are discovered from �low-level� event data recorded by information systems.
The quality of the discovered models is usually assessed by measures that
depend on assumptions made by discovery algorithms; for example, they of-
ten assume that sequences of activities recorded in the event data do not
interfere. Models produced by recent discovery algorithms consider domain
knowledge and relax these assumptions, making traditional PM measures
less suitable for evaluating their quality. This paper proposes an ontology-
aware framework, called SOLID-M, for analyzing the quality of conceptual
models discovered from event data generated by systems. SOLID-M relies
on domain knowledge and provides guidelines for introducing quality mea-
sures for models constructed by process discovery algorithms that go beyond
the traditional PM assumptions. In addition, the paper describes an in-
stantiation of the framework for assessing the quality of Multi-Agent System
models discovered using Agent System Mining techniques, hence addressing
a growing demand for data-driven analysis of business processes emerging in
interactions of human and arti�cial intelligence agents.
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1. Introduction

The aim of Process Mining (PM) is to discover, analyze, and repair con-
ceptual models of business processes using event data extracted from infor-
mation systems [1]. PM discovery algorithms synthesize process models in
�high-level� modeling languages (e.g., Petri nets and BPMN) from �low-level�
behavior speci�cations (e.g., event logs) [2].

An important success measure for business process modeling projects is
the quality of produced process models [3]. The PM community often reasons
about the quality of discovered models using the �four quality dimensions in
process discovery� framework (the 4QD framework) [4]. The four dimensions
are replay �tness, precision, generalization, and simplicity. The 4QD frame-
work identi�es recall, precision, and model size as common measures for the
replay �tness, precision, and simplicity dimensions, respectively. An intuitive
set-theoretical framework for quantifying the �tness, precision, and general-
ization dimensions is proposed by Buijs, van Dongen, and van der Aalst (the
BDA framework) [5]. The BDA framework de�nes several precision, recall,
and generalization measures by relating the behaviors captured in the model,
the log from which the model was discovered, and the system that generated
the log. The behaviors are given as sets of traces, where a trace is a sequence
of observed events, each referring to an activity executed in some instance of
a business process (also known as a case).

Process discovery algorithms based on the traditional process modeling
paradigms and the corresponding model quality measures share the same
assumptions, e.g., a single control �ow for each case and a single case for
each event. These assumptions are relaxed in new PM types that extend or
mix the existing paradigms, e.g., Object-Centric Process Mining (OCPM) [2],
Agent System Mining (ASM) [6], and Queue Mining [7]. This observation
motivates the de�nition of new quality measures and frameworks suitable for
evaluating models constructed by new types of discovery algorithms.

We present the SOLID-M framework, an ontology-aware quality frame-
work for the assessment of models discovered from event data. SOLID-M
extends and generalizes the existing quality frameworks currently used in
PM. Our framework is grounded in the semiotic quality framework (SE-
QUAL) designed by Lindland, Sindre, and Sølvberg [8] for the quality analy-
sis of conceptual models, and in the data quality framework with ontological
foundations based on Bunge's ontology [9, 10]. We extend SEQUAL by
adding quality aspects that relate data with models and ontologies using set-
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theoretical measures. The key to our approach is the observation that the
existing model quality frameworks used in PM (4QD and BDA) are limited
to behavior-only models. To address this limitation, we rely on SEQUAL.
Like BDA, SEQUAL follows a set-theoretical approach. However, elements
of the sets in SEQUAL are speci�cation statements representing behavioral
or structural concepts, not limited to traces only.

With the rapid growth of Arti�cial Intelligence (AI), human-AI interac-
tions within business processes are becoming increasingly widespread [11].
Consequently, the importance of Multi-Agent System (MAS) discovery is
growing, necessitating new methods for assessing the quality of MAS mod-
els. In this context, we instantiate the SOLID-M framework to evaluate the
quality of MAS models discovered using Agent Miner [12] based on event
data generated by business processes.

The next section describes the methodology used to conduct the research
presented in this paper. Section 3 explains the context and background
information required for understanding the ideas articulated in this paper.
Section 4 provides an overview of the existing related model quality frame-
works. Section 5 introduces an example MAS model discovered by Agent
Miner. Section 6 presents the SOLID-M framework and exempli�es its in-
stantiation using an agent-based ontology and measures for assessing the
quality of MAS models discovered from event data. Section 7 discusses the
contributions of SOLID-M in the light of existing frameworks, sketches an al-
ternative instantiation of SOLID-M for OCPM, and acknowledges limitations
of the framework. Finally, Section 8 states concluding remarks.

2. Methodology

This paper presents a Design Science Research (DSR) artifact [13], the
SOLID-M quality framework designed for the analysis of conceptual models
discovered from event data. This artifact was developed using the DSR
Methodology (DSRM) by performing the following activities of the DRSM
process [14]:

� Problem identi�cation and motivation. The measures of the qual-
ity of process models produced by traditional process discovery algo-
rithms are not suitable for assessing the quality of models discovered
by the new types of process discovery techniques. The reason for this is
that the assumptions underpinning the traditional quality measures do

3



not hold for these process discovery types. For example, the assump-
tions of a single process instance for each event and a single control
�ow for each process instance are relaxed in OCPM and ASM, respec-
tively. Consequently, the motivation for this work is to propose ways to
evaluate models constructed by the new types of discovery algorithms.

� De�ne the objectives for a solution. To address the identi�ed
problem, we designed the SOLID-M framework to meet the following
requirements: (a) it must enable assessment of the quality of conceptual
models containing both behavioral and structural elements represent-
ing organizations and their processes; (b) it must enable explicit speci-
�cation of the assumptions underpinning the techniques and measures
used for creation and quality assessment of the conceptual models; (c) it
must enable assessment of the quality of conceptual models discovered
from data recorded by information systems.

� Design and development. We designed our quality framework,
SOLID-M, by combining and extending the existing frameworks and
models described in Section 4. The SOLID-M framework is de�ned in
Section 6. Its main components are the modeling artifact sets and qual-
ity aspects integrated into the aspect graph depicted in Figure 9. We
designed SOLID-M incrementally. Our starting point was the tradi-
tional PM quality frameworks (4QD and BDA) that de�ne the quality
measures for behavior-only process models. To meet requirement (a),
we used SEQUAL [8, 15], a generic model quality framework supporting
conceptual models containing not only behavioral but also structural
elements. The original SEQUAL framework does not satisfy require-
ments (b) and (c) because it does not deal with explicit identi�cation
of assumptions associated with quality aspects and does not de�ne
any quality aspects relating models to data. To overcome this lim-
itation, we extended SEQUAL with ontology-related quality aspects
based on the ontology-aware representational model of information sys-
tems [16], which proposes the use of ontologies with explicitly de�ned
real world domain concepts. To satisfy requirement (c), we conceptu-
alized a model as a result of the data interpretation process described
in the ontology-aware data quality framework [10].

� Demonstration and Evaluation. Our example instantiation of
SOLID-M demonstrates the use of the framework for analyzing the
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quality of agent-based Petri net models discovered from event data by
the Agent Miner algorithm [12]. We evaluate SOLID-M by relating
the results of the demonstrated framework instantiation example with
the solution objectives stated as three requirements. Requirement (a)
is met in the example SOLID-M instantiation by including behavioral
(e.g., Event) and structural (e.g., Agent and Interface) elements in the
example Model set (see Figure 7 and Table 7). Requirement (b) is satis-
�ed by explicit speci�cation of the agent-based concepts in the Ontology
set (see Figure 10 and Table 2). Requirement (c) is ful�lled specifying
the characteristics (e.g., Model-Data Structural Completeness) and the
corresponding measure (e.g., Model-Data Structure Recall) for assess-
ing the Interpretational Model Quality aspect.

� Communication. We communicate the artifact we designed, the
SOLID-M framework, in the paper at hand.

3. Background

This section explains the context and key concepts underpinning the
SOLID-M framework, namely ontologies [17], process discovery [4], and sys-
tems thinking [18].

3.1. Ontologies and Description Logic

The term ontology is understood di�erently in di�erent communities. We
adopt a computational view frequently used in computer science. In this
context, a (computational) ontology is a formal, explicit speci�cation of a
shared conceptualization [17], where a conceptualization is an abstract repre-
sentation of the world or some domain. Any formally represented knowledge
relies on a conceptualization that identi�es objects, concepts, and the rela-
tions between them, which are assumed to exist in an area of interest. To be
an ontology, a conceptualization must be explicitly speci�ed in some formal
language, with its meaning shared among its users.

In this paper, the Web Ontology Language (OWL) is used to specify
conceptualizations. More precisely, we use the OWL-DL sub-language of
OWL that has well-de�ned decidable semantics mapped to Description Logic
(DL) [19]. DL is a subset of First-Order Logic with decidable reasoning
problems. For each OWL-DL language construct, there is an equivalent
DL construct, which makes OWL-DL a popular language for representing
knowledge in the semantic web and knowledge management software [20].
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The name �Description Logic� is motivated by the fact that, on the one
hand, the important notions of the domain are described by concept descrip-
tions, i.e., expressions that are built from atomic concepts (unary predicates)
and atomic roles (binary predicates) using the concept and role constructors
provided by the particular DL. On the other hand, DLs di�er from their pre-
decessors, such as semantic networks and frames, in that they are equipped
with a formal, logic-based semantics.

DLs have three types of elements: individuals denoting things in the
world, concepts denoting sets of individuals, and roles denoting relations
between the individuals. A knowledge base represented using DLs has two
components: a TBox and an ABox. The TBox is a set of terminological
axioms, DL expressions that de�ne the concepts and roles of the domain of
interest. The axioms contain the terminology of the knowledge base. The
ABox is a set of assertions about expressing the facts about the individuals
in the domain of interest. The assertions are expressed using the terminology
de�ned in the TBox.

3.2. Process Mining

Process Mining (PM) is a research discipline that studies techniques for
extracting knowledge about real world organizations from event logs recorded
by information systems [4]. The extracted knowledge is represented in con-
ceptual models of business processes using business process modeling lan-
guages (e.g., Petri net, BPMN, and UML activity diagrams). PM concep-
tualizes a business process as a sequence of events that happen to achieve
objectives in the context of an organization. Each event refers to an activity,
a well-de�ned unit of business behavior. The assumption is that repetitive
patterns of activity sequences exist in organizations and that the event data
captured from these organizations accurately represent the patterns.

The same event data may be interpreted from di�erent PM perspectives,
each based on di�erent goals and assumptions. The control �ow perspective,
the main PM perspective, is grounded in the one case notion assumption.
According to this assumption, the purpose of a business process is to complete
one case (e.g., a customer request), and every event within this case is related
to this case only.

Object-Centric Process Mining (OCPM) relaxes the one case notion as-
sumption. It allows an event to be associated with multiple objects of di�er-
ent types [21]. The way the quality of OCPM models is measured depends on
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the object types and their relations. The use of process quality frameworks
relying on the single case notion is problematic for OCPM.

The Agent System Mining (ASM) perspective assumes that an end-to-end
(global) business process is induced by interactions of multiple autonomous
agents performing their own (local) processes [12]. This is di�erent from a
traditional PM view of centrally controlled resources executing a well-de�ned
end-to-end �ow of activities.

3.3. Behavior and Structure of Systems

This paper discusses the quality of conceptual models that describe real
world systems in terms of their behavior and structure. We de�ne a system
as a whole consisting of social and technical components that interact with
each other to serve some purpose. This de�nition is similar to the notion
of a socio-technical system discussed by Wu et al. [22], which is used for
holistic modeling of arti�cial and natural phenomena in multiple problem
domains. For example, an organization can be conceptualized as a system
that contains people, computers, and other equipment as components, all
interacting to perform business processes.

A system model typically addresses two questions: �What does the sys-
tem contain?� and �What does the system do?� To answer these questions,
a model needs to describe the structure and behavior of the system, respec-
tively. Event and process are examples of concepts used to model system
behavior. Relationships among system components constitute the system
structure. Examples of system structure concepts are components, resources,
objects, actors, agents, and interfaces. ArchiMate is an example of an enter-
prise architecture language that explicitly groups its concepts into behavior
and structure categories [23]. In this framework, active structure elements
(i.e., actors) generate changes in passive structure elements (i.e., objects) by
executing behavioral elements (i.e., processes).

The key concepts in PM are behavioral. An event log is a collection of
traces, where a trace is a sequence of events describing the execution of a
single process instance. The focus is on what happens (behavior), not on who
and what makes it happen (structure). Nonetheless, some PM approaches
discover models that incorporate both behavioral and structural elements.
For example, OCPM discovers objects that represent the passive structure
of a system, whereas ASM discovers agents that capture its active structure.
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4. Related Frameworks

This section provides an overview of the frameworks that in�uenced the
design of SOLID-M.

4.1. Four Quality Dimensions in Process Discovery

Figure 1 shows the four quality dimensions (4QD) framework for char-
acterizing the quality of process models discovered from event logs [4]. The
four dimensions are �tness, precision, generalization, and simplicity.

Process 
Discovery

(able to replay event log)

Fitness
(Occam’s razor)

Simplicity

Precision
(not underfitting the log)

Generalization
(not overfitting the log)

Figure 1: Balancing the four quality dimensions [4].

Fitness and precision relate event logs and the process models discovered
from these logs. Fitness characterizes the ability of the process model to
represent the behavior captured in the event log. A model with perfect
�tness represents all the behavior contained in the corresponding event log.
Precision indicates to what extent the model under�ts the log, e.g., it shows
how much of the behavior described in the model can be found in the log.
The model has perfect precision if all its behavior can be found in the log.
The generalization dimension characterizes the ability of the process model to
represent the actual behavior of the observed system, even if some behavior
of this system is not captured in the event log. Finally, simplicity refers to
the amount of e�ort required to understand the discovered model.

The four dimensions are de�ned in terms of behavior modeled as process
traces. The behavior-only focus limits the use of this framework for process
discovery methods where, in addition to behavior, the discovered models
contain structural entities such as objects, artifacts, or agents.

4.2. Behavior Sets for Precision and Recall

Precision and �tness (also known as recall), the two most commonly used
dimensions from the 4QD framework, are further articulated in the frame-
work by Buijs, van Dongen, and van der Aalst, the (BDA) framework [5],
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through the lens of three overlapping sets of behavior in terms of process
traces: behavior of a real world system, behavior captured in an event log,
and behavior represented in a process model. A Venn diagram for the three
behavior sets is depicted in Figure 2.

1

Process Model (M) Event Log (L)

System (S)

234

5

6

7

Figure 2: Venn diagram showing how the behavior of the process model (M), event
log (L) and system (S) can be disjoint or overlapping [5].

The diagram identi�es seven classes of traces. For example, traces in
class 1 are the traces of the system recorded in the log and described by
the model, whereas the traces in class 2 are the traces that the system does
not generate, yet recorded in the log (maybe due to a logging error) and
not described by the model (perhaps because they were suppressed by thr
discovery algorithm as noise).

The BDA framework de�nes model-log precision and recall, log-system
precision and recall, and model-system precision and recall quality measures
for process models discovered from event data based on the relationship be-
tween the corresponding behavioral sets. The model-system recall measure
is referred to as generalization. The behavior sets de�ned in BDA do not in-
clude structural entities, such as objects or agents. This prevents the direct
use of this framework for evaluating models discovered by PM algorithms
that relax the traditional PM assumptions.

4.3. Statement Sets for Conceptual Model Quality

The semiotic quality framework (SEQUAL) for discussing the quality
of conceptual models was proposed by Lindland, Sindre, and Sølvberg [8].
SEQUAL is based on Morris' semiotics theory of signs [24]. This framework
views a conceptual model as a set of speci�cation statements. No assumptions
or constraints are imposed on the statements. First, SEQUAL de�nes four
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sets of statements: Model, Domain, Language, and Audience Interpretation.
A Model is a set of statements made in a conceptual model. A Domain
is a set of true statements about the domain of reality being modeled. A
Language is a set of statements that are correct according to the grammar
of the modeling language of the model. An Audience Interpretation is a
set of statements recognized by the audience in the model. Then, three
aspects of the model quality are de�ned as relations between the four sets:
syntactic quality relates the Model to Language, semantic quality relates
the Model to Domain, and pragmatic quality relates the Model to Audience
Interpretation. Figure 3 visualizes the SEQUAL framework as a graph with
four nodes corresponding to the sets and three edges corresponding to the
quality aspects.

Figure 3: The SEQUAL framework [8].

SEQUAL was extended for assessing the quality of process models in an
organizational context [15]. This extension introduces a dynamic perspective
where an organization changes a problem domain by performing business
activities speci�ed in process models. It creates the need to update the
process models. Neither the initial SEQUAL nor its process model extension
considers scenarios where process models are created or updated based on
data. This gap needs to be addressed when using this framework in the PM
context.

4.4. Iterative Ontology-Based Representation of Real World

Wand and Weber formulated the representational model of an informa-
tion system [16]. The key working premise of this model is that an informa-
tion system is someone's representation of a real world system. Information
system analysis, design, and implementation are viewed as an iterative pro-
cess of creating representations of a real world system in the form of data
in an information system. These representations are called scripts. The
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initial iterations create less formal human-oriented scripts. Each new itera-
tion transforms the previously created script into a more formal and detailed
script. The �nal iterations produce machine-oriented scripts that machines
can use to process information. This idea of iterative transformations of
representation scripts is visualized in Figure 4.

Figure 4: The representational model of an information system [16].

The scripts at di�erent iterations of the representation process are ex-
pressed in di�erent languages. These languages have di�erent vocabularies
and levels of abstraction and describe invariants of real world structure and
behavior. In computer science, an ontology of a domain de�nes established
facts, concepts, and relationships between them for the purpose of transi-
tioning between di�erent domain representations [25]. In this approach, an
ontology developed by Bunge [9] is used to identify elements of a real world
system preserved in transitions between the iterations so that the produced
scripts can be linked and compared.

4.5. Data Quality through Ontology-Based Representation and Interpretation

Wand and Wang proposed a data quality framework that extended the
representational model based on Bunge's ontology [10]. We call it the Bunge-
Wand-Wang (BWW) data quality framework (see Figure 5).

BWW includes the representation process that produces an information
system containing data about a real world system. The framework also
introduces the direct observation and interpretation processes. In the former,
the user constructs a view of the system by directly observing it. In the latter,
the user's view of the system is inferred from data in an information system.
The BWW framework de�nes a data de�ciency as a di�erence between the
direct and inferred user views. Bunge's ontology [9] is used to compare real
world entities present in the two views, identify data de�ciencies, and group
the de�ciencies into several categories and quality dimensions.
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System

Perception of the 
Real World (RW) 
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RW System
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RW System as 

inferred from the IS

Information System
(IS)

Direct Observation

Representation Interpretation

Possible Data Deficiencies

Figure 5: The BWW data quality framework [10].

Figure 6: A schematic visualization of the example health surveillance system [12].

5. Motivating Example

This section introduces an example agent-based model of a hypothetical
health surveillance process, discovered from event data by Agent Miner, a
non-traditional process discovery algorithm grounded in the Agent-Based
Modeling paradigm [12]. We use this example in the remainder of this paper
to illustrate how the SOLID-M framework can be instantiated to analyze the
quality of discovered agent-based models.

Figure 6 shows a schematic visualization of the hypothetical health surveil-
lance system. We observe this system from an agent-based point of view as a
distributed process emerging from interactions of �ve agents within a Multi-
Agent System (MAS). The �ve agents are doctors d1 to d5 belonging to agent
types a1, a2, and a3. The agents perform patient diagnostics and preventive

12



physical activities. Doctor d1 (agent type a1) performs four activities in the
`Checkup' group. Doctors d2 and d4 (agent type a2) perform three activities
in the `Tests' group. Doctors d3 and d5 (agent type a3) perform three activ-
ities in the `Exercises' group . In addition to performing their activities, the
agents interact, as shown in Figure 6.

The end-to-end patient health surveillance process emerges as a result of
the agent interactions and activities. A patient case is an instance of this end-
to-end process representing one episode of checking health for one patient.
A case trace is a sequence of events associated with the same patient case
where each event is an instance of an activity performed by a corresponding
agent type. A typical case trace can be represented as the following sequence
of (agent type, activity) pairs: ⟨(a1, check) , (a1, analyze) , (a1, prescribe) ,
(a2,B-test) , (a2,U-sound) , (a1, check) , (a1, analyze) , (a1, prescribe) ,
(a3, yoga) , (a3, physio) , (a1, check) , (a1, discharge)⟩.

Event data representing multiple case traces produced by the example
MAS over a period of time is captured in the example event log. A fragment
of this log is presented in Table 1. Each line in the event log represents several
facts about structure and behavior elements related to one event produced by
the MAS. For example, the �rst row in the table provides facts about event
e1 that happened in case c0 and was produced by agent type a1 performing
activity `check' at time `0:00'.

Table 1: A fragment of the example event log.

Event Case Activity Agent Time

e1 c0 check a1 0:00
e2 c0 discharge a1 1:01
e3 c1 check a1 2:02
e4 c1 analyze a1 3:03
e5 c1 prescribe a1 4:04
e6 c1 B-test a2 5:05
e7 c1 X-ray a2 6:06
e8 c1 swim a3 7:07
e9 c1 physio a3 8:08
e10 c1 check a1 9:09
e11 c1 discharge a1 10:10

The Agent Miner algorithm uses the example event log to discover the
MAS model comprising four Petri nets: one interaction net and three agent
nets. These four nets are shown in Figure 7. The interaction net contains
three labeled transitions (a1, a2, and a3) that correspond to the agent types
and two paths between transitions (from a1 to a2 and from a1 to a3) that
correspond to the interfaces between the agent types. Each agent net repre-
sents a local process executed by the respective agent type. For example, the

13



four labeled transitions of agent net a1 correspond to the activities executed
by agent type a1.

a1

a2

a3

(a) Interaction net

check

analyze prescribe

discharge

(b) Agent net a1

B-test X -ray

U -sound

(c) Agent net a2

yoga

swim

physio

(d) Agent net a3

Figure 7: A MAS model comprising one interaction net and three agent nets.

These nets can be composed into the MAS net by re�ning the labeled
transitions in the interaction net with the corresponding agent nets [12].

We aim to answer the following questions about the quality of the MAS
model discovered by Agent Miner:

a) How well does the model represent the local behavior of each agent
type?

b) How well does the model represent the structural elements of the MAS
(agent types and interfaces)?

c) How easily can a model user recognize the agent types and interfaces
represented in the model?

The traditional quality measures used in the process mining community
(e.g., �tness and precision as de�ned in the BDA framework) are inadequate
for addressing these questions, as they are not grounded in an agent-based
ontology. These measures are not formulated in terms of agents, their inter-
faces, or their local processes. In the following section, we introduce a generic
quality framework that overcomes this limitation.

6. The SOLID-M Framework

This section presents the SOLID-M framework, an ontology-aware quality
framework for conceptual models mined from event data. Section 6.1 intro-
duces the key concepts and components of the framework, and outlines how

14



they �t together. Next, Section 6.2 describes the modeling process assumed
by the framework. Finally, Section 6.3 and Section 6.4 discuss the modeling
artifacts and quality aspects of the SOLID-M framework, respectively.

We use the health surveillance example introduced in Section 5 to show
how the framework elements can be instantiated to assess the quality of
agent-based models discovered from event data. The full speci�cations of all
the example artifacts developed in this example framework instantiation are
publicly available [26].

6.1. Overview

SOLID-M addresses the need of the PM community to evaluate mod-
els discovered using non-traditional methods, going beyond the single-case-
notion, single-control-�ow view of the world. The cornerstone of the SOLID-M
framework is the idea of a model as a set of speci�cation statements describ-
ing system behavior and structure, where the statements are expressed in
some modeling language (e.g., Petri nets) and grounded in some ontology
(e.g., an agent-based ontology). Guided by this idea, our framework de�nes
six types of modeling artifacts as sets of statements, namely the System,
Ontology, Language, Interpretation, Data, and Model sets; the �rst letters
of the six types of artifacts form the framework name, SOLID-M. These ar-
tifacts are produced by modeling activities of the ontology-aware modeling
process presented in Figure 8. This modeling process provides a context for
the main component of the SOLID-M framework, the quality aspects graph
depicted in Figure 9.

Figure 8: The SOLID Model quality framework: the ontology-aware modeling pro-
cess.
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Figure 9: The SOLID Model quality framework: the quality aspects graph.

The SOLID-M ontology-aware modeling process is a sequence of modeling
activities. The inputs and outputs of the activities are modeling artifacts. In
the �gure, the activities and artifacts are depicted as rectangles and ovals,
respectively. Each activity is linked to its input and output artifacts by
inbound and outbound arrows. The process participants are either model
authors (the analysts) or model users (the audience). The dashed frame
marks the boundary of the analysts' control. All activities and their output
artifacts inside the dashed box are produced by the analyst. An analyst cre-
ates the Model artifact by performing the Specify Ontology, Select Language,
Represent System, and Interpret Data activities. The Model produced by the
analyst is interpreted by the audience in the Interpret Model activity to gain
a better understanding of the modeled real world System artifact they are
interested in. The Interpretation artifact represents the understanding of
the System achieved by the audience as a result of performing the Interpret
Model activity.

The SOLID-M quality aspects graph (Figure 9) is a directed graph, where
nodes and edges correspond to the SOLID-M modeling artifacts and quality
aspects, respectively. A quality aspect is a grouping of quality characteristics
indicating a dependency between two modeling artifacts. Each quality aspect
is associated with one source-target pair of related modeling artifacts, where
the target artifact depends on the source artifact. A quality characteristic is
the characteristic of the quality of the corresponding target artifact relative to
the corresponding source artifact. For example, the �Interpretational model
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quality� aspect is a group of quality characteristics that characterize the
Model artifact relative to the Data artifact. This aspect is associated with
the (Data, Model) pair, where Model (the target artifact) depends on Data
(the source artifact). The quality characteristics grouped under this aspect,
like precision and recall, indicate the quality of Model relative to Data.

Multiple quality measures can be de�ned for each SOLID-M quality char-
acteristic. To de�ne these measures explicitly, the source and target artifacts
associated with each characteristic are understood as sets of statements. A
statement expresses a fact, a conceptual construct, or an opinion in some lan-
guage. For example, Model and Data artifacts are viewed as sets of model
and data statements, respectively. The content and structure of the state-
ments depend on an ontology selected by the analyst. The statements in all
the sets are grounded in the same ontology of choice. This makes it possi-
ble to compare statements across di�erent sets and de�ne quality measures
based on the set intersections, unions, and di�erences.

All target artifacts for any quality aspect in Figure 9 are the outputs of
the modeling activities performed by the analysts (i.e., the activities inside
the dashed box in Figure 8). Thus, the quality characteristics associated
with any aspect de�ned in SOLID-M are used to reason about the quality of
the Model, Data, Language, and Ontology artifacts produced or used by the
analysts.

The SOLID-M framework cannot be used directly. It should be instan-
tiated for the given types of real world systems and modeling objectives.
The framework de�nes the statement sets and quality aspects and guides the
de�nition of the quality characteristics and measures. The characteristics
suggested here as part of the quality aspect descriptions are examples only
that are intended to aid a better understanding of the corresponding aspects.

An instantiation of the framework starts by choosing the types of real
world systems of interest and specifying the ontology that de�nes the con-
cepts, relations, and constraints constituting the Ontology set. Then, the
instantiation de�nes the quality characteristics and measures grounded in
the speci�ed ontology. For example, Figure 6 illustrates a real world system
of interest for our example SOLID-M instantiation. In this instantiation,
we choose to reason about this system of interest as a MAS of interacting
agents. Thus, we de�ne �MAS�, �Agent�, and related concepts in our example
ontology as speci�ed in the UML class diagram depicted in Figure 10.
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Figure 10: A UML class diagram specifying the example ontology.

6.2. Modeling Process

SOLID-M is based on the assumption that creation of conceptual models
from data follows the modeling process depicted in Figure 8. This SOLID-M
modeling process involves �ve activities (rectangles) and six artifacts (ovals).
Multiple iterations of this process are possible, with each iteration producing
an improved modeling artifact.

The �System� oval in Figure 8 is the input to the �rst step of the process,
�Specify Ontology�, because it denotes an implicit, informal understanding
(not an explicit description in some modeling language) of a real world frag-
ment that the analyst directly observes for the purpose of modeling. The
analyst uses this implicit understanding to specify an ontology suitable for
describing the observations. Our �System� corresponds to the term �System�
in the BDA framework (Section 4.2) and the term �Domain� in the SEQUAL
framework (Section 4.3). In our example, Figure 6 informally visualizes the
example �System�, and the speci�ed agent-based ontology is de�ned in the
UML diagram shown in Figure 10.

The same real world phenomena can be conceptualized using di�erent
ontologies [17]. For example, we can conceptualize the same observed behav-
ior as produced by a system of multiple interacting agents (an agent-based
ontology) or by a single centralized process (a process-oriented ontology).
Therefore, the �rst step in the SOLID-M modeling process is to specify an
ontology. The same ontological concept can be expressed in di�erent mod-
eling languages [16]. For instance, the same process can be described using
a Petri net or a BPMN diagram. Hence, in the SOLID-M modeling process,
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the ontology speci�cation step is followed by the language selection step.
The �Represent System� and �Select Language� activities can be per-

formed by the analyst in parallel, producing Data and Language artifacts
based on direct observations of the system of interest and concepts from the
speci�ed ontology. The event log fragment in Table 1 and the language meta-
model presented in Figure 11 demonstrate the Data and Language artifacts
for our example instantiation of the framework.

The example ontology metamodel and the example language metamodel
are speci�ed in two separate diagrams (Figures 10 and 11) because the con-
cepts they present di�er in nature. Figure 10 speci�es ontological terms that
conceptualize entities in the real world, while Figure 11 speci�es language
concepts that are used to de�ne the language syntax and grammar. In ad-
dition, the same ontology may correspond to several modeling languages, so
de�ning the ontological concepts in a separate diagram allows using the same
version of Figure 10 across multiple alternative modeling languages, with the
one shown in Figure 11 being one example.

Figure 11: A UML class diagram specifying concepts used in the Language set
(white and gray boxes are Agent Miner speci�c and traditional Petri net concepts,
respectively).

The �Interpret Data� activity generates a Model artifact. This activity is
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automated by the Agent Miner algorithm [12] in our example. It discovers the
example Model artifact, a MAS model containing four Petri nets, as shown
in Figure 7. This MAS model is discovered from the example event log
(Table 1) and modeled using agent-based Petri nets de�ned by the language
metamodel in Figure 11.

The �nal activity of the process is �Interpret Model�. It results in the In-
terpretation artifact. In this activity, a model user creates their understand-
ing of the model by interpreting the Model artifact created in the previous
step. User understanding of the model may be incomplete due to missing
model elements. In our example, the better the user understands the model,
the closer the Interpretation artifact is to the example model in Figure 7.

6.3. Modeling Artifacts

To use the SOLID-M modeling artifacts in model quality assessments,
these artifacts need to be presented as sets of logical statements using the
same formal language so that statements from di�erent sets can be compared
and reasoned about in a consistent way. We use Description Logic statements
expressed in the Manchester OWL notation [27] as a language for statements
of the SOLID-M modeling artifact sets. This notation is used because it
can be understood by users with no Description Logic background, and pro-
cessed by OWL tools for formal reasoning and visualization [20]. The full
OWL speci�cation of all artifact sets for the example agent-based SOLID-M
instantiation is publicly available [26].

From the Description Logic formalism perspective, the artifact sets can
be grouped into two types: TBox sets and ABox sets. The statements in the
ABox sets are assertions about the individual facts associated with a single
observation of the system of interest. Di�erent observations may produce
di�erent corresponding ABox sets. The TBox sets contain terminological
axioms that de�ne the concepts and relations constituting the vocabulary
for constructing the ABox sets. The TBox sets are constructed �rst, as they
provide the conceptual constructs for the ABox sets. Inspired by the onto-
logical meta-modeling framework proposed by Yonglin et al. [28], we de�ne a
TBox set using a UML class diagram and translate it into the corresponding
Manchester OWL statements. The use of UML o�ers a concise yet formal
representation that simpli�es the understanding of a TBox set as a whole
and can be unambiguously translated into OWL. The SOLID-M artifact sets
are de�ned as follows.
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System (S) is the set of all true statements about the individual elements
included in the real world system of interest. The audience and analysts
perceive this set as an area of the real world that is relevant to modeling
goals. This set is an assertion box (ABox) that postulates true facts about
the system's individual elements. Our example System set is constructed
based on the informal description of the system provided in Figure 6. We
assume this is a true description of the actual system and convert it into the
formal OWL statements of the System set using the concepts de�ned in the
terminological axioms of the example Ontology set OWL TBox (see Table 2).
A fragment of the System set OWL ABox is presented in Table 3.

Table 2: A fragment of the Ontology set in Manchester OWL.

ID Ontology set statement

1 Class: o:Event
2 Class: o:Agent
3 Class: o:Agent_Trace
4 Class: o:Activity
5 Class: o:MAS
6 ObjectProperty: o:isProducedBy Domain: o:Event Range: o:Agent
7 ObjectProperty: o:isProducedBy Domain: o:Event Range: o:Activity
8 ObjectProperty: o:isPartOf Domain: o:Event Range: o:Agent_Trace
9 ObjectProperty: o:isPerformedBy Domain: o:Activity Range: o:Agent
10 ObjectProperty: o:isPartOf Domain: o:Activity Range: o:MAS

Ontology (O) is the set of statements that explicitly de�ne the con-
structs (concepts and relationships) and constraints in the real world. This
set describes the common terminology (TBox), the vocabulary that is used
to compare the statements in the other �ve sets of the framework. The
analysts specify this set in formal knowledge representation (e.g., OWL or
RDFS) or meta-modeling (e.g., UML) languages. Figure 10 demonstrates
the UML class diagram for our example Ontology set. UML classes and
named uni-directional associations de�ne TBox concepts and relations, re-
spectively. For example, the `isPerformedBy' relation between the `Activity'
and `Agent' concepts of the Ontology set is represented in Figure 10 as the
`isPerformedBy' association line from the `Activity' class box to the `Agent'
class box. We do not specify cardinality constraints in our TBox sets. This
way, we keep the diagram simple and adaptable to various instantiations of
the cardinality constraints. Table 2 shows a fragment of the example Ontol-
ogy set in the Manchester OWL syntax. This fragment de�nes �ve concepts
as OWL classes (statements 1 to 5) and �ve relations as OWL object proper-
ties (statements 6 to 10). One OWL class is de�ned for each UML class, and
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one OWL object property is de�ned for each UML association. For example,
statement 9 corresponds to the association `isPerformedBy' from the class
`Activity' to the class `Agent'. These two classes are speci�ed in statements
4 and 2, respectively.

Table 3: A fragment of the System set in OWL.

ID System set statement in Manchester OWL

1 Individual: a1 Types: o:Agent
2 Individual: a2 Types: o:Agent
3 Individual: a3 Types: o:Agent
4 Individual: ifc_a1_a2 Types: o:Interface Facts: o:isFrom a1, o:isTo a2
5 Individual: ifc_a1_a3 Types: o:Interface Facts: o:isFrom a1, o:isTo a3
6 Individual: ifc_a2_a1 Types: o:Interface Facts: o:isFrom a2, o:isTo a1
7 Individual: ifc_a3_a1 Types: o:Interface Facts: o:isFrom a3, o:isTo a1
8 Individual: check Types: o:Activity Facts: o:isPerformedBy a1
9 Individual: c0 Types: o:Case
10 Individual: interaction1 Types: o:Interaction Facts: o:happensOver ifc_a1_a2, o:hasNext atrace1
11 Individual: atrace1 Types: o:Agent_Trace Facts: o:happensFor c0, o:isProducedBy a1, o:hasNext interaction1
12 Individual: e1 Types: o:Event Facts: o:isProducedBy check, o:happensFor c0, o:isPartOf atrace1, o:hasNext e2
13 Individual: patioent1
14 Individual: doctor2

Language (L) is the set of statements that explicitly de�ne the con-
structs (concepts and relationships) and constraints of a modeling language.
It speci�es the grammar of the language used to construct the model. This
set describes the terminology (TBox) that enables ontological analysis of
the modeling grammar and syntactic veri�cation of the model. Figure 11
and Table 4 present the UML class diagram and a fragment of the OWL
TBox for the example Language set. The set includes generic Petri net
concepts (e.g., `Transition', `Place', `Work�ow_Net') and concepts speci�c
to the agent-based models discovered by Agent Miner (e.g., Agen_Net,
Agent_Transition, MAS_Model). In addition to UML associations, the
Language set UML diagram uses UML generalization to specify sub-class
relations between the language concepts. For example, `Agent_Net' is a
sub-class of `Work�ow_Net'.

Interpretation (I) is the set of statements that the audience acknowl-
edges and/or understands in the model. The statements in this set re�ect a
subjective audience's view of the real world area postulated by the System
set. This set is an assertion box (ABox) that articulates the audience's inter-
pretation of the statements in the Model set. In our example, we assume that
the user incorrectly associates the B-test activity with agent a3 and does not
recognize the interface from a1 to a2. A fragment of the example Interpreta-
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Table 4: A fragment of the Language set in Manchester OWL.

ID Language set statement

1 Class: l:Firing
2 Class: l:Agent_Net
3 Class: l:Agent_Transition
4 Class: l:Activity_Transition
5 Class: l:MAS_Model
6 Class: l:Transition
7 ObjectProperty: l:�res Domain: l:Firing Range: l:Transition
8 ObjectProperty: l:isPartOf Domain: l:Activity_Transition Range: l:Agent_Net
9 ObjectProperty: l:isPartOf Domain: l:Agent_Net Range: l:MAS_Model
10 ObjectProperty: l:re�nes Domain: l:Agent_Net Range: l:Agent_Transition

tion set OWL ABox in Table 5 represents this incorrect interpretation by the
user. If a user had a complete understanding of the MAS model discovered
by Agent Miner, then the Interpretation set OWL ABox would be identical
to the Model set OWL ABox.

Table 5: A fragment of the Interpretation set in OWL.

ID Model set statement in Manchester OWL

1 Individual: a1 Types: o:Agent
2 Individual: a2 Types: o:Agent
3 Individual: a3 Types: o:Agent
4 Individual: prescribe Types: o:Activity Facts: o:isPerformedBy a1
5 Individual: analyze Types: o:Activity Facts: o:isPerformedBy a1
6 Individual: yoga Types: o:Activity Facts: o:isPerformedBy a3
7 Individual: check Types: o:Activity Facts: o:isPerformedBy a1
8 Individual: B-test Types: o:Activity Facts: o:isPerformedBy a3
9 Individual: swim Types: o:Activity Facts: o:isPerformedBy a3
10 Individual: U-sound Types: o:Activity Facts: o:isPerformedBy a2
11 Individual: ifc_a1_a3 Types: o:Interface Facts: o:isFrom a1, o:isTo a3

Data (D) is the set of all statements recorded during observations of the
real world system. This set is used as input for model discovery techniques.
A common way to specify this set is an event log with individual event
attributes used as the set statements. This set is an assertion box (ABox)
containing facts about individual real world objects represented by events
captured by the information system. Table 6 shows a fragment of the Data
set OWL ABox. It is a translation of the given event log to OWL using
the terminology de�ned in the Ontology set. Every line in the event log has
a corresponding event statement in the Data set. For example, the event
log lines 1, 4, and 5 in Table 1 correspond to OWL statements with IDs 9,
10, and 11 in Table 6. Instead of using the time attribute, the OWL object
property �hasNext� is used in the OWL statements to indicate ordering of
events, because the Ontology de�nes this object property and does not de�ne
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any time relationships for events. For example, the �hasNext� property in
line 8 of the Data set OWL (Table 1) speci�es that the next event after event
e1 is event e2.

Table 6: A fragment of the Data set in OWL.

ID Data set statement in Manchester OWL

1 Individual: a1 Types: o:Agent
2 Individual: a2 Types: o:Agent
3 Individual: a3 Types: o:Agent
4 Individual: check Types: o:Activity Facts: o:isPerformedBy a1
5 Individual: B-test Types: o:Activity Facts: o:isPerformedBy a2
6 Individual: swim Types: o:Activity Facts: o:isPerformedBy a3
7 Individual: c0 Types: o:Case
8 Individual: c1 Types: o:Case
9 Individual: e1 Types: o:Event Facts: o:happensFor c0, o:isProducedBy check, o:isProducedBy a1, o:hasNext e2
10 Individual: e4 Types: o:Event Facts: o:happensFor c0, o:isProducedBy B-test, o:isProducedBy a2, o:hasNext e5
11 Individual: e5 Types: o:Event Facts: o:happensFor c0, o:isProducedBy swim, o:isProducedBy a3, o:hasNext e6

Model (M) is the set of all statements about the system inferred from
the data. This set is an assertion box (ABox) containing facts about the
individual objects discovered from the statements in the Data set. The state-
ments in this set are formulated using the mapping between the terminology
of the modeling grammar de�ned in the Language set and the terminology
from the Ontology set. Table 7 shows a fragment of the resulting Model set
OWL ABox constructed from the MAS model of four Petri nets discovered by
Agent Miner (Figure 7). We use the mapping between the concepts de�ned
in the Ontology and Language sets to convert the elements of the discov-
ered Petri nets into the corresponding OWL statements of the Model set.
For example, the �Agent� from the Ontology is mapped to �Agent_Net� and
�Agent_Transition� in the Language. The full ontology-to-language mapping
and corresponding Python code are publicly available [26].

6.4. Quality Aspects

The quality aspects graph (Figure 9) represents all quality aspects and
modeling artifacts de�ned in the SOLID-M framework. The graph edges and
nodes correspond to the quality aspects and modeling artifacts, respectively.
Each aspect groups quality characteristics and measures.

In the remainder of this section, we provide de�nitions for all SOLID-M
quality aspects. The quality aspect de�nitions are accompanied by examples
of agent-based quality characteristics and measures over the instantiation of
the SOLID-M artifact sets described in Section 6.2.
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Table 7: A fragment of the Model set in OWL.

ID Model set statement in Manchester OWL

1 Individual: a1 Types: o:Agent
2 Individual: a2 Types: o:Agent
3 Individual: a3 Types: o:Agent
4 Individual: prescribe Types: o:Activity Facts: o:isPerformedBy a1
5 Individual: analyze Types: o:Activity Facts: o:isPerformedBy a1
6 Individual: yoga Types: o:Activity Facts: o:isPerformedBy a3
7 Individual: check Types: o:Activity Facts: o:isPerformedBy a1
8 Individual: B-test Types: o:Activity Facts: o:isPerformedBy a2
9 Individual: swim Types: o:Activity Facts: o:isPerformedBy a3
10 Individual: U-sound Types: o:Activity Facts: o:isPerformedBy a2
11 Individual: ifc_a1_a2 Types: o:Interface Facts: o:isFrom a1, o:isTo a2
12 Individual: ifc_a1_a3 Types: o:Interface Facts: o:isFrom a1, o:isTo a3

All the example measures are grounded in the ratio model for similarity
between two sets proposed by Tversky [29]. In addition, the measures related
to the Ontology set (LOCC, OSCC, and DOCC) are the adaptations of the
semantic coverage of ontology measures proposed in the Quality Model of
Ontology for Semantic Descriptions of Web Services [30]. The presented
recall measures (MSSR, DSSR, and MDSR) are derived from the three set-
theoretical recall measures de�ned in the BDA framework [5]. Each of the
proposed measures can take values between zero and one. Zero and one
correspond to the lowest and the highest levels of the related characteristic,
respectively.

The example measures are linked to MAS structure elements. These
elements are conceptualized as agents and interfaces connecting the agents
in the given Ontology set. Table 8 shows the OWL statements for all system
structure elements in the example System, Data, and Model sets.

Table 8: Structure elements in the example System, Data, and Model sets.

Structure element OWL statement In System In Data In Model

Individual: a1 Types: o:Agent Yes Yes Yes
Individual: a2 Types: o:Agent Yes Yes Yes
Individual: a3 Types: o:Agent Yes Yes Yes
Individual: ifc_a1_a2 Types: o:Interface Facts: o:isFrom a1, o:isTo a2 Yes No Yes
Individual: ifc_a1_a3 Types: o:Interface Facts: o:isFrom a1, o:isTo a3 Yes No Yes
Individual: ifc_a2_a1 Types: o:Interface Facts: o:isFrom a2, o:isTo a1 Yes No No
Individual: ifc_a3_a1 Types: o:Interface Facts: o:isFrom a3, o:isTo a1 Yes No No

Semantic Model Quality This aspect focuses on the e�ectiveness of
the Model in depicting the System to achieve modeling objectives. Gener-
alization is an example of a semantic quality characteristic existing in the
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process mining literature [4]. It characterizes the validity of the model in
relation to the system as the proportion of the statements in the Model set
that are also present in the System set. We propose Model-System Structural
Completeness as a possible characteristic for this quality aspect. This charac-
teristic describes the extent to which the model represents the actual system
structure. It can be measured by Model-System Structure Recall (MSSR).
We de�ne this measure as MSSR = |Ss ∩Ms|/|Ss|, where Ss ⊂ S is the set
of all the statements in S that specify the system structure elements (agents
and interfaces) present in reality, and Ms ⊂ M is the set of all statements in
M that specify the system structure elements represented in the model. Ac-
cording to Table 8, the total number of the OWL statements specifying the
system structure elements in the System set is seven (three agents and four
interfaces). The intersection of the system structure elements in the System
and Model sets has a size of �ve (a1, a2, a3, ifc_a1_a2, and ifc_a1_a3).
Therefore, MSSR = 5/7 = 0.71. It is a good result showing that the model
correctly represents most of the system structure.

Interpretational Model Quality This aspect examines how well the
Model interprets the Data used to discover it. It is named after the interpre-
tation process from the BWW data quality model. Model-event log precision
and recall of the 4QD and BDA frameworks can be adopted as characteris-
tics for this quality aspect. Precision indicates the validity of the model in
relation to the data. It captures the proportion of statements in the Model
set that appear in the Data set. Recall indicates the completeness of the
model in relation to the data. It shows what proportion of the Data set
appears in the Model set. We propose Model-Data Structural Completeness
as an example characteristic for this aspect. This characteristic describes the
extent to which the model represents the system structure elements captured
in the data. It can be measured by Model-Data Structure Recall (MDSR).
We de�ne this measure as MDSR = |Ds∩Ms|/|Ds|, where Ds ⊂ D is the set
of all the statements in D that specify the system structure elements repre-
sented in the data, and Ms ⊂ M is the set of all the statements in M that
specify the system structure elements represented in the model. According to
Table 8, Ds is a subset of Ms. This means |Ds ∩Ms| = |Ds| and MDSR = 1.
The model fully represents all the system structure elements captured in the
data.

Pragmatic Model Quality This aspect pertains to the degree of un-
derstanding of the model by its users. Simplicity and modularity are possible
characteristics under this aspect. Model size, de�ned as the number of model
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elements, is often used as a measure of simplicity [4]. The smaller the model
size, the higher the pragmatic quality of the model. An increase in the mod-
ularity of a model enhances the understanding of the model by its users [31].
We propose System Structure Comprehension as a possible characteristic
for this aspect. This characteristic describes how well a user comprehends
the system structure as represented in the model. It is measured by De-
gree of System Structure Comprehension (DSSC ). We de�ne this measure
as DSSC = |Is ∪Ms|/|Ms|, where Is ⊂ I is the subset of the Interpretation
set I that speci�es all the agents and interfaces recognized by a user, and
Ms ⊂ M is the set of all the statements in M that specify all the agents
and interfaces represented in the model. As per Table 8, Ms contains �ve
elements (a1, a2, a3, ifc_a1_a2, and ifc_a1_a3). Let us assume that a user
does not recognize interface ifc_a1_a3. In this case, DSSC = 4/5 = 0.8.

Syntactic Model Quality This aspect concerns the correctness of the
model with respect to the syntax and grammar of the language used to de-
scribe it. One of the characteristics of this aspect is the syntactic correctness
of the model, which is measured by the number of syntactic errors in the
model. We propose Model Syntactic Correctness as an example character-
istic for this aspect. This characteristic addresses the correct use of the
modeling language syntax in the model. It is quanti�ed using the Degree of
Correct Model Statements (DCMS ) measure. DCMS = |Mc|/|M |. M is the
Model set. Mc ⊆ M is the subset of M containing all the statements of the
Model set that are correct according to the modeling grammar speci�ed in
the Language set. DCMS is equal to 1, because all the statements of the
Model set are syntactically correct (i.e., |Mc| = |M | ). This is a typical sit-
uation, as syntactic defects are trivial to detect and need to be �xed before
analyzing other quality aspects.

Semantic Data Quality This aspect is concerned with how well the
data used to discover the model represents the system. It is named after the
iterative process of constructing a representation of a real world system ac-
cording to the BWW representational model. The event log-system precision
and recall from the BDA framework can be adopted as possible characteristics
of this quality aspect. We propose Data-System Structural Completeness as
an example characteristic for this aspect that describes how well the data col-
lected from the system represents the system structure. This characteristic is
measured by Data-System Structure Recall (DSSR). We de�ne this measure
as DSSR = |Ss ∩ Ds|/|Ss|, where Ss ⊂ S is the set of all the statements in
S that specify the system structure elements (agents and interfaces) present
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in reality, and Ds ⊂ D is the set of all the statements in D that specify the
system structure elements represented in the data. According to Table 8, the
total number of OWL statements specifying the system structure elements
in the System set is seven (three agents and four interfaces). The size of the
intersection of the system structure elements in the System and Model sets is
three (a1, a2, and a3). Thus, DSSR = 3/7 = 0.43. This low value indicates
that the data in the Data set does not capture the system structure well.
This result is consistent with the complete absence of the interface data in
the given event log.

Ontological Data Quality This aspect entails the degree of alignment
and conformity between the Data statements and the concepts and rela-
tionships de�ned by the ontology. It involves mapping the individual data
elements to the ontological constructs. Data construct correspondence can
be used as a characteristic of how well the concepts and relationships of the
chosen ontology are represented in the data. We propose Data-Ontology Con-
ceptual Completeness as an example of a characteristic for this aspect. This
characteristic concerns how well the ontology concepts are represented in data
captured from the system. It is measured by Data-Ontology Concept Cover-
age (DOCC ). We de�ne this measure as DOCC = |Od

c |/|Oc|, Od
c ⊆ Oc ⊆ O,

where O is the Ontology set, Oc contains all the classes in O, and Od
c contains

the OWL classes from Oc that are explicitly instantiated in the Data set. The
event log (Table 1) and the corresponding Data set explicitly specify the in-
stances of the four classes from the Ontology set (`Agent', `Activity', `Case',
and `Event'). The remaining �ve classes (`MAS', `Interface', `Interaction',
`Agent_Trace', and `Case_Trace') are not directly represented by the data.
Thus, DOCC = 4/9 = 0.44. A value below 0.5 indicates that the data lacks
explicit information about a signi�cant number of concepts in the ontology
(Figure 10).

Ontological Language Quality This aspect revolves around the as-
sessment of how e�ectively the language aligns with the ontology. It involves
an ontological analysis of the modeling grammar, which identi�es construct
de�cits and redundancies by mapping the metamodels of the modeling gram-
mar and ontology. We propose Language-Ontology Conceptual Completeness
as an example of a characteristic for this aspect. This characteristic assesses
how well the concepts of the ontology are represented in the modeling lan-
guage. It is measured by Language-Ontology Concept Coverage (LOCC ).
We de�ne this measure as LOCC = |Ol

c|/|Oc|, Ol
c ⊆ Oc ⊆ O where O is the

Ontology set, Oc contains all the classes in O, and Ol
c contains the OWL
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classes from Oc that have at least one matching class in the Language set.
To calculate LOCC , we match the classes of the Ontology set to the corre-
sponding OWL classes in the Language set. Table 9 presents the Ontology
to Language class matching results. Three of the nine classes in Oc (classes
with IDs 6, 7, and 9) are not matched to the Language set. The six matched
classes belong to set Ol

c. Based on the matching, LOCC = 6/9 = 0.67. This
value indicates a high level of ontological completeness for the modeling lan-
guage, with the majority of its concepts represented. It can be improved by
adding explicit support for the trace concepts to the language.

Table 9: Class matching.

ID Ontology class Language class

1 MAS MAS_Model
2 Agent Agent_Net
3 Interface Interface_Path
4 Activity Activity_Transition
5 Event Firing
6 Agent_Trace no match
7 Interaction no match
8 Case Token
9 Case_Trace no match

Semantic Ontology Quality This aspect emphasizes the ability of an
ontology to provide a conceptual foundation for the system. We propose
Ontology-System Semantic Completeness as an example of a characteristic
for this aspect. This characteristic addresses the suitability of the ontology
for describing the real world system. It is measured by Ontology-System
Concept Coverage (OSCC ). We de�ne this measure as OSCC = |So

c |/|Sc|
where Sc is a set of all concepts required to explain the semantics of the
individual entities in the System set, and So

c ⊆ Sc is a subset of Sc containing
the concepts explicitly de�ned as classes in the Ontology set. All the entities
in the System set are classi�ed using eleven concepts (see [26]). Nine of them
are speci�ed in the Ontology set and two, `Patient' and `Doctor', are assumed
for individuals with names `patient1' and `doctor2', respectively (Table 3).
This results in OSCC = 9/11 = 0.82. This value of OSCC points to a high
ability of the ontology to de�ne the concepts assumed in system observations.

7. Discussion

We designed SOLID-M to overcome the limitations of traditional PM
quality measures, which cannot adequately assess models discovered by new
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types of PM algorithms, as explained in Section 5. In our example healthcare
surveillance MAS, the traditional frameworks are unsuitable because they are
grounded in a process-oriented ontology that lacks the concepts needed to
capture structural elements (e.g., agents and their interfaces). SOLID-M
addresses this gap by introducing a generic, �exible mechanism for de�ning
quality measures based on an explicitly speci�ed ontology. Using this mecha-
nism, we instantiate SOLID-M with an agent-based ontology and associated
quality measures, enabling the evaluation of MAS models in terms of agents,
their interfaces, and their local behaviors.

Figure 12: A UML diagram capturing an example object-centric ontology.

The example in Section 5 can be viewed from the Object Centric Process
Mining (OCPM) perspective [2] as a process involving four object types (pa-
tient type and three doctor types). In this case, one can create an OCPM
instantiation of SOLID-M grounded in an object-centric ontology, selecting
Object-Centric Petri Nets (OCPNs) as a modeling language. Such an object-
centric ontology is depicted in Figure 12. Consequently, OWL statements in
all sets of SOLID-M artifacts and quality measures across all SOLID-M qual-
ity aspects should be expressed in terms of the concepts from this ontology.
To assess the Interpretational Model Quality aspect of OCPN models discov-
ered from object-centric event data, one can de�ne the Model-Data Behav-
ioral Completeness and Model-Data Structural Completeness characteristics.
These characteristics describe the extent to which OCPN models represent
behavior (case traces) and structure (objects) elements, respectively, as cap-
tured in the object-centric event logs. The behavioral completeness can be
measured using the OCPN �tness measure de�ned in [32]. An example of a
measure that can be used to assess the structural completeness is the object-
centric structure �tness (OCSF) OCSF = |Do ∩ Mo|/|Do|, where Do is the
subset of the Data set that contains all the statements specifying object in-
stances included in the log, and Mo is the subset of the Model set with all
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the statements specifying object instances represented in the OCPN model.
Table 10 maps the elements of SOLID-M to the elements of the existing

quality frameworks. In this table, the �rst column lists the SOLID-M model-
ing artifacts and quality aspects from Figure 9. The remaining four columns
list the corresponding elements of the four quality frameworks reviewed in
Section 4. For example, Data in SOLID-M corresponds to Event Log in 4QD
and BDA frameworks, and to Information System State in the BWW frame-
work. It has no corresponding element in the SEQUAL framework. If a cell
in the table contains the �no match� label, it indicates that the corresponding
SOLID-M element has no equivalent in the respective framework.

Table 10: Mapping of SOLID-M elements to elements of other quality frameworks.

SOLID-M Elements 4QD Elements BDA Elements SEQUAL Elements BWW Elements

System System System Domain
User's Observed View
of Real World System

Ontology no match no match no match Ontology

Language no match no match Language Grammar

Interpretation no match no match Audience Interpretation
User's Inferred View
of Real World System

Data Event Log Event Log no match
Information System
State

Model Process Model Process Model Model
User's Inferred View
of Real World System

Semantic
model quality

Generalization
Model - System
Precision and Recall

Semantic quality no match

Interpretational
model quality

Fitness, Precision
Model - Event Log
Precision and Recall

no match no match

Pragmatic
model quality

Simplicity no match Pragmatic quality no match

Syntactic
model quality

no match no match Syntactic quality no match

Ontological
model quality

no match no match no match no match

Semantic
data quality

no match
Event Log - System
Precision and Recall

no match Data de�ciencies

Ontological
data quality

no match no match no match no match

Ontological
language quality

no match no match no match no match

Semantic
ontology quality

no match no match no match no match

Pragmatic
ontology quality

no match no match no match no match

SOLID-M extends the BDA framework by generalizing the BDA behav-
ior sets into ontology-based statement sets. Elements of the BDA sets are
process traces. In SOLID-M, elements of the statement sets are not limited

31



to process traces. They can represent any real world entities (behavioral or
structural) formulated in terms of a given ontology. We follow the idea from
the BWW representational model to use an ontology as a reference language
that de�nes fundamental concepts representing the structure and behavior
of the real world. These concepts remain invariant across the languages used
for all statement sets of the SOLID-M framework. This makes it possible to
compare and reason about the statements from di�erent sets in a consistent
manner.

In SOLID-M, the Ontology set is an explicit variable parameter. A spe-
ci�c SOLID-M instantiation speci�es an ontology that �ts the intended use.
This approach is di�erent from the 4QD and BDA frameworks, which assume
the underlying behavior-only ontology of the single-case notion. The ability
to select an explicit ontology allows a straightforward instantiation of the
SOLID-M framework for new types of process mining. First, an ontology is
selected that supports the concepts and assumptions of the new PM type.
Then, the statements in all sets of the framework are formulated using the
concepts from the selected ontology. Finally, ontology-speci�c de�nitions of
characteristics and measures are provided for each SOLID-M quality aspect.

SOLID-M extends the SEQUAL framework by introducing the Data set
of statements and the quality aspects related to this set. We achieve this
by examining the relationships between the Model, Data, System, and In-
terpretation sets through the lenses of the representation and interpretation
processes in the BWW data quality framework. From the perspective of the
representation process, the System and Data sets of SOLID-M play the roles
of the real world system and the information system state, respectively. From
the perspective of the interpretation process, the Model and Interpretation
sets of SOLID-M play the roles of an externalized and internalized user's
views of the real world system (the system) as inferred from the information
system state (the data). A model discovered from the data is understood
as an intermediate externalized result of the interpretation process. This is
why the SOLID-M quality aspect linking the Data and Model sets is called
�Interpretational model quality.�

The SOLID-M treatment of the interpretation process is di�erent from
the BWW framework. In BWW, this process produces a user's view of a
real world system directly from data captured in an information system. In
SOLID-M, the interpretation process is split into two sub-processes: (i) an
analyst interprets data to construct a conceptual model of a real world system
represented by the data using model discovery techniques, (ii) users interpret
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the model to infer their view (interpretation) of the system.
The proposed framework has several limitations. Every quality aspect is

associated with a directed pair (source, target) of modeling artifacts, where
the quality of the target is characterized in relation to the source. Quality
measures calculated over one target artifact, such as model size measures of
pragmatic model quality, are not directly supported.

The framework does not cover the pragmatic quality of the Ontology and
Language artifacts. This excludes the de�nition of ontology and language
measures related to user interpretation. A possible direction for extending
SOLID-M is to de�ne additional quality aspects, focusing on the pragmatic
quality of ontologies and modeling languages.

Our framework focuses on auto-discovered conceptual models that are in-
tended for direct use by human users. Quality characteristics and measures
speci�c to the Business Process Simulation (BPS) context are not considered.
SOLID-M can be extended to support BPS model quality assessment by com-
bining our ontology-aware approach with the BPS-speci�c multi-perspective
quality measures de�ned in the framework for measuring the quality of BPS
models [33].

SOLID-M addresses the quality of conceptual models discovered from
data, not discovery algorithms themselves. Quality characteristics of discov-
ery algorithms (such as time and space complexity) are important factors
in the evaluation of new PM techniques. Extending SOLID-M with quality
aspects of discovery algorithms is an interesting topic for future research.

This paper does not develop a standard reference ontology for MAS dis-
covery. A fully �agged reference ontology for data-driven agent-based model-
ing would enable improved SOLID-M instantiations for MAS model quality
assessments. A study to propose a MAS ontology and investigate represen-
tational bias for MAS discovery is future work.

8. Conclusion

This article presents SOLID-M, a quality framework for conceptual mod-
els discovered from event data. The framework enables a systematic assess-
ment of the quality of discovered models by capturing both behavioral and
structural aspects. It also supports the explicit speci�cation of the assump-
tions underlying the techniques and measures used in model construction
and quality evaluation.

33



We provide an example of how to instantiate this framework to assess
the quality of MAS models discovered using the Agent Miner algorithm. As
the adoption of AI agents in business processes continues, we expect greater
availability of data representing the local behavior of AI and human agents
contributing to emergent system-level business outcomes. The use of agent-
based process mining techniques to generate MAS models from these data
will increase. To address the need for better ways to assess the quality of
discovered MAS models, one can extend the MAS instantiation of SOLID-M
with new quality measures that re�ect the speci�cs of interactions between
human and AI agents across di�erent business domains.
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